• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Structure of Rings of Differential Operators and Poisson Algebras

Research Project

Project/Area Number 11640029
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOKAYAMA UNIVERSITY

Principal Investigator

HIRANO Yasuyuki  Okayama University, Faculty of Science, Associate Professor, 理学部, 助教授 (90144732)

Co-Investigator(Kenkyū-buntansha) NAKAJIMA Atsusi  Okayama University, Faculty of Environmental Science and Technology, Professor, 環境理工学部, 教授 (30032824)
IKEHATA Shuichi  Okayama University, Faculty of Environmental Science and Technology, Professor, 環境理工学部, 教授 (20116429)
TASAKA Takashi  Okayama University, Faculty of Science, Professor, 理学部, 教授 (60012407)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2000: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1999: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsDifferential Operator / Skew Differential Operator / Ordered monoid / Monoid Ring / Shew Polynomial Ring / Crossed Product / Azumaya Algebra / Higher Derivation / 順序群 / 歪群環 / 純非分離拡大 / 導分 / イデアル / 自己同型 / 入射加群 / 多項式環 / 不変部分環
Research Abstract

1. Let A be an affine domain over a field k of characteristic O, and g a k-automorphism of A of order m. We studied the ring D (A ; g) of differential operators introduced by A.D.Bell. We proved that if A is a free module over the fixed subring A' of A by g with a basis containing 1, then D (A ; g) is isomorphic to the ring of m by m matrices over D (A'). It follows from Grothendieck's Generic Flatness Theorem that for an arbitrary A there is an element c of A such that D(A[1/C] ; g) is isomorphic to the ring of m by m matrices over D ((A [1/c])). As an application, we determined the structure of D(A ; g) when A is a polynonmial or Laurent polynomial ring over k and g is a diagonalizable linear automorphism.
2. A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. We showed that if R is (left principally) quasi-Baer and G is an ordered monoid, then the monoid ring RG is again (left principally) quasi- … More Baer. When R is (left principally) quasi-Baer and G is an ordered group acting on R, we gave a necessary and sufficient condition for the skew group ring R#G to be (left principally) quasi-Baer.
3. A ring R is said to be reduced if it has no nonzero nilpotent elements. Let R be a ring and let g be an automorphism of R.We gave a necessaryand sufficient condition for the skew polynomial ring R [x ; g] to be reduced, We also gave some sufficient condition for R [x ; g] to a Baer ring, a quasi-Baer ring, or a principally quasi-Baer ring.
4. Let B be a Z-Azumaya algebra, D a derivation, and Z' the element z of Z such that D (z)=0. We proved that if Z/Z' is a purely inseparable extension of exponent 1 and B satisfies some other conditions then the skew polynomial ring B [x ; D] is an Azumaya algebra. Let p be a prime, G a p-group, B a ring, and f a factor set of B.We showed tha if the crossed product Δ (B, G, f) is separable over B and if p is contained in the Jacobson radiucal of B then Δ (B, G, f)/B is an H-separable extension.
5. We introduced the notion of generalized higher derivations and developed the relations between them and ordinary higher derivations. We also investigated the categorical properties of generalized higher derivations. Less

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (32 results)

All Other

All Publications (32 results)

  • [Publications] 中島惇: "On categorical properties of generalized derivations"Scientiae Mathematicae. 2. 345-352 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 中島惇: "On generalized higher derivations"Turkish Journal of Mathematics. 24. 295-311 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 池畑秀一: "Purely inseparable ring extensions and H-separable polynomials"Mathematical Journal of Okayama University. 40. 55-63 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 平野康之: "A note on skew differential operators on commutative rings"Communications in Algebra. 28. 3777-3784 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 平野康之: "Semiprime Ore extensions"Communications in Algebra. 28. 3795-3801 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 平野康之: "Some results on skew polynomial rings over a reduced ring"Proceedings of the Third Korea-China-Japan International Symposium on Ring Theory, Birkhauser.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 平野康之: "On totally ordered monoid rings over a quasi-Baer rings"Communications in Algebra.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 中島惇: "On generalized Jordan derivations"Proceedings of the Third Korea-China-Japan International Symposium on Ring Theory, Birkhauser.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 池畑秀一: "Note on separable crossed products"Mathematical Journal of Okayama University.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 池畑秀一: "Purely inseparable ring extensions and Azumaya algebras"Mathematical Journal of Okayama University.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsusi Nakajima: "On categorical properties of generalized derivations"Scientiae Mathematicae. 2. 345-352 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsusi Nakajima: "On generalized higher derivations"Turkish J.Math. 24. 295-311 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Shuichi Ikehata: "Purely inseparable ring extensions and H-separable polynomials"Math.J.Okayama Univ.. 40. 55-63 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yasuyuki Hirano: "A note on skew differential operators on commutative rings"Comm.Algebra. 28. 3777-3784 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yasuyuki Hirano: "Semiprime Ore extensions"Comm.Algebra. 28. 3795-3801 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yasuyuki Hirano: "Some results on skew polynomial rings over a reduced ring"Proc.3rd Korea-China-Japan Internat.Sympo.on Ring Theory, Brikhauser Comm.Algebra.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yasuyuki Hirano: "On totally ordered monoid rings over a quasi-Baer rings"Proc.3rd Korea-China-Japan Internat.Sympo.on Ring Theory, Brikhauser Comm.Algebra.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsusi Nakajima: "On generalized Jordan derivations"Proc.3rd Korea-China-Japan Internat.Symop.on Ring Theory, Birkhauser.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Shuichi Ikehata: "Note on separable crossed products"Math.J.Okayama Univ..

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Shuichi Ikehata: "Purely inseparable ring extensions and Azumaya algebras"Math.J.Okayama Univ..

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yasuyuki Hirano: "On totally ordered monoid rings over a quasi-Baer ring"Comm.Algebra.

    • Related Report
      2000 Annual Research Report
  • [Publications] Yasuyuki Hirano: "Some results on skew polynomial rings over a reduced ring"Proc.Internat.Sympo.on Ring Theory (Birkhauser).

    • Related Report
      2000 Annual Research Report
  • [Publications] Shuichi Ikehata: "Note on separable crossed products"Math.J.Okayama Univ.. (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shuichi Ikehata: "Purely inseparable ring extensions and Azumaya algebras"Math.J.Okayama Univ.. (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atushi Nakajima: "On generalized higher derivations"Turkish J.Math.. 24. 295-311 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsushi Nakajima: "Generalized Jordan derivations"Proc.Internat.Sympo.on Ring Theory (Birkhauser).

    • Related Report
      2000 Annual Research Report
  • [Publications] Yasuyuki Hirano: "On injective modules whose endomorphism rings are simple Artinian"Comm. Algebra. 27 3. 1385-1391 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Yasuyuki Hirano: "On the uniqueness of rings of coefficients in skew polynomial rings"Pub1. Math. Debrecen. 54. 489-495 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Juncheol Han: "Semiprime Ore extensions"Comm. Algebra.

    • Related Report
      1999 Annual Research Report
  • [Publications] Yasuyuki Hirano: "On injective hulls of simple modules"J. Algebra.

    • Related Report
      1999 Annual Research Report
  • [Publications] Yasuyuki Hirano: "A note on skew differential operators on commutative rings"Comm. Algebra.

    • Related Report
      1999 Annual Research Report
  • [Publications] Shuichi Ikehata: "Purely inseparable ring extensions and H-separable polynomials"Math. J. Okayama Univ..

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi