• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Grant-in-Aid for Scientific Research(C)(2)

Research Project

Project/Area Number 11640040
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

KURIHARA Masato  TMU, Faculty of Science, Associate Professor, 理学(系)研究科(研究院), 助教授 (40211221)

Co-Investigator(Kenkyū-buntansha) KURANO Kazuhiko  TMU, Faculty of Science, Associate Professor, 理学(系)研究科(研究院), 助教授 (90205188)
NAKAMULA Ken  TMU, Faculty of Science, Professor, 理学(系)研究科(研究院), 教授 (80110849)
MIYAKE Tatsuya  TMU, Faculty of Science, Professor, 理学(系)研究科(研究院), 教授 (20023632)
MATSUNO Kazuo  TMU, Faculty of Science, Assistant, 理学(系)研究科(研究院), 助手 (40332936)
TAKEDA Yuichiro  TMU, Faculty of Science, Assistant, 理学(系)研究科(研究院), 助手 (30264584)
中村 博昭  東京都立大学, 理学研究科, 助教授 (60217883)
宮崎 琢也  東京都立大学, 理学研究科, 助手 (10301409)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2000: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1999: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsIwasawa theory / elliptic curve / Tate-Shafarevich group / supersingular reduction / テイトーシャファレビッチ群 / 岩澤不変量 / 岩澤主予想 / ティトーシャファレビッチ群 / スーパーシンギュラーリダクション
Research Abstract

B. Mazur began to construct in 1970's Iwasawa theory for elliptic curves which generalizes the work of Iwasawa on ideal class groups to Selmer groups and Tate Shafarevich groups. If an elliptic curves has ordinary reduction at every prime above p, we have a sufficient Iwasawa theory which describes the relation between the Selmer group and the p-adic L-function. But if it does not have ordinary reduction, nothing had been known for a long time. In our research, at first we considered an elliptic curve over the rational number field which has supersingular reduction at p. We determined the Galois wodule structure of the Selmer groups over the intermediate fields of the cyclotomic Z-extension of the rational number field, in particular we determined the orders of the p-components of the Tate-Shafarevich groups over them. Our new discovery is that they can be described by using fractional invariants though in usual Iwasawa theory one uses integer invariants. We constructed a conjectuve which describes how the orders grow in general case, and proved it in some special cases. We found that the distribution relation and the Galois module structure of the local Mordell Weil group are important to understand this phenomenon. We also constructed a homomovphism which sends the zeta element by K. Kato to the modular element by Mazuv and Tate, which gives the relation between the p-adic analytic side and the p-adic algebraic side.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] Masato Kirihara: "On the Tate Shafarevich groups over cyclotomic fields"Inventiones mathematicae. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "Exponential maps and explicit formulas"Geometry and Topology Monograph. 3. 91-94 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "On the ideal class groups of the maximal real subfields"Journal of European Math.Society. 1. 35-49 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "The Iwasawa λーinvariant of real abelian fields"Tokyo Journal of Mathematics. 22-2. 259-277 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "Test modules to calculate Dutta multiplicities"Journal of Algebra. 236. 216-235 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuo Matsuno: "An analogue of Kida's formula of modular elliptic curves"Journal of Number theory. 84. 80-92 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "On the Tate Shafarevich groups over cyclotomic fields"Inventiones mathematicae. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "Exponential maps and exponential formulas"Geometry and Topology Monograph. 3. 91-94 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "On the ideal class groups of the maximal real subfields"Journal of European Mathematical Society. 1. 35-49 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "The Iwasawa λ-invariant of real abelian fields"Tokyo Journal of Mathematics. 22-2. 259-277 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "Test modules to calculate Dutta multiplicities"Journal of Algebra. 236. 216-235 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuo Matsuno: "An analogue of Kida's formula of modular elliptic curves"Journal of Number theory. 84. 80-92 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masato Kurihara: "On the Tate-Shafarevich groups over cyclotomic fields"Inventiones mathematicae.

    • Related Report
      2001 Annual Research Report
  • [Publications] Masato Kurihara: "Remarks on the λp-invariants of cyclic fields of degree P"Acta Arithmetica.

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazuhiko Kurano: "Test modules to calculate Dutta multiplicities"Journal of Algebra. 236. 216-235 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazuhiko Kurano: "Roberts rings and Dutta multiplicities"Lecture Notes in pure and applied Math.. 217. 273-287 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Masato Kurihara: "Two types of complete discrete valuation fields"Geometry and Topology Monographs. Vol3. 109-112 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Masato Kurihara: "Exponential maps and explicit formulas"Geometry and Topology Monographs. Vol3. 91-94 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Masato Kurihara: "The exponential homomorphisms for the Milnor K-groups"J.reine angew,Math.. 498. 201-221 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Masato Kurihara: "On the ideal class groups of the maximal real subflelds"Journal of European Math.Soc.. 1. 35-49 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Masato Kurihara: "The Iwasawa X-invariant of real abelianfields"Tpkyo Journal of Math.. 22巻2号. 259-277 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hiroaki Nakamura: "Limits of Galois representations in fundcmoutal groups"American J.Math.. 121. 315-358 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hiroaki Nakamura: "Some IHX type relations on trivalent graphs"Math Res Letters. 5. 391-402 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Masato Kurihara, Takuya Miyazaki: "Princiyal series Whittaker functions on Sp (2,R)"Tohoku Math J.. 50. 243-260 (1998)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi