• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An analytic research on "estimates of character sums" and "the distribution property of primitive roots"

Research Project

Project/Area Number 11640050
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionMeiji Gakuin University

Principal Investigator

MURA Leo  Meijigakuin Univ., Dept. of Economics, Professor, 経済学部, 教授 (30157789)

Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2001: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsCharacter Sums / L(1 / 2+it,X) / the Residual Order / the Residual Index / Artin's Conjecture Primitive Roots / Lー関数の特殊値 / 原始根の分布 / Vinogradovの不等式 / Burgessのbound
Research Abstract

In this research, we studied about "estimates of character sums" and "the distribution property of primitive roots".
On estimates of character sums, we considered some averages of the character sum S(X ; 0, N), where S(X ; 0, N)=Σ^N_<n=0>X(n), and we got a new upper bound for the average value of |S(X ; 0, N)|. Our bound is an improvement of the famous Polya-Vinogradov's bound and Burgess' bound, in the sense of average. As an application of this new bound, we obtained some average type results on the q-estimate of L(1/2+it,X).
Let a be a positive integer with a【double plus】1 and Q_a(x ; t,s) be the set of primes p【less than or equal】x such that the residual order of a(mod p) in the group (Z/pZ)^* is congruent to s modulo t. It is known that the residual order fluctuates quite irregularly and we know only little about the distribution property of the residual order so far. In this research we calculated the natural densities of Q_a(x ; 4, i) for i=0, 1, 2, 3 (Collaboration with Dr. K. Chinen). Our main result shows that, for example, when a is square-free and ≡1l(mod 4), then the above distribution has a beautiful property:
The natural density of Q_a(x ; 4,0) and Q_a(x ; 4,2) =1/3, unconditional result,
The natural density of Q_a(x ; 4, 1) and Q_a(x ; 4,3) =1/6, under Generalized Riemann
Hypothesis.
We got similar results fore more general a's.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] Leo Murata: "On characters of order p(mod P^2)"Acta Arithmetica. 87. 245-253 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 村田玲音: "指標和の評価の改良について"明治学院論叢・総合科学研究62. 637. 23-39 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 村田玲音: "指標和の平均値の評価について"京都大学 数理研講究録. 1091. 128-134 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Leo Murata: "A Note on a Certain Average of L(1/2+it, X)"Anelytic Number Theory(Ed. C. Jia, K.Matsumoto). 269-276 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 村田玲音: "ガウス和の偏角分布について"明治学院論叢・総合科学研究64. 644. 91-99 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 村田玲音, 知念宏司: "a(mod p)の剰余位数の分布について"京都大学 数理研講究録. 1219. 245-255 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] "On characters of order p (mod p^2)"Acta Arithmetica. Vol. 87. 245-253 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] "Mean Values of Character Sums"The Meijigakuin Ronso, Proceedings of Integrated Arts and Sciences 62. Vol. 637. 23-39 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] "On an estimate of character sums"Kyoto University, RIMS Kokyuroku. Vol.1091. 128-134 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] "A Note on a Certain Average of L(1/2+it, X)""Analytic Number Theory" Edited by C. Jia and K. Matsumoto, publish in 2002. 269-276

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] "On a Equi-distribution property of the arguments of Gauss Sums,"The Meijigakuin Ronso, Proceedings of Integrated Arts and Sciences 64. Vol. 644. 91-99 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] "On a distribution property of the residual order of a (mod p)"Kyoto University, RIMS Kokyuroku. Vol. 1219. 245-255 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 村田玲音, 知念宏司: "a(mod p)の剰余位数の分布について"京大数理研・構究録. 1219. 245-255 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 村田玲音, 石井 坦: "剰余位数の分布の一性質について"明治学院産業経済研究所年報. 18. 65-72 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Leo Murata: "A Note on a Certain Average of L(1/2+it, X)"論文集"Analytic Number Theory" Ed.by C.Jia & K.Matsumoto. Published by Kluwer.. (予定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 村田 玲音: "指標和の平均値の評価について"京都大学数理解析研究所講究録. 1091. 128-134 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 村田 玲音: "ガウス和の偏角分布について"明治学院大学論叢 総合科学研究. 64. 91-99 (2000)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi