• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integrable geodesic flows and semi-classical approximations

Research Project

Project/Area Number 11640053
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

KIYOHARA Kazuyoshi  Hokkaido Univ., Grad.School of Sci., Assoc.Prof., 大学院・理学研究科, 助教授 (80153245)

Co-Investigator(Kenkyū-buntansha) IGARASHI Masayuki  Sci.Univ.of Tokyo, Fac.Ind.Sci.of Tech., Lect., 基礎工学部, 講師 (60256675)
ISHIKAWA Goo  Hokkaido Univ., Grad.School of Sci., Assoc.Prof., 大学院・理学研究科, 助教授 (50176161)
IZUMIYA Shuichi  Hokkaido Univ., Grad.School of Sci., Prof., 大学院・理学研究科, 教授 (80127422)
TSUKAMOTO Chiaki  Kyoto Kougei-Sen-i Univ., Fac.of Textile, Assoc.Prof., 纎維学部, 助教授 (80155340)
SUGAHARA Kunio  Osaka Kyouiku Univ., Fac.of Edu., Prof., 教育学部, 教授 (20093255)
山口 佳三  北海道大学, 大学院・理学研究科, 教授 (00113639)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1999: ¥1,800,000 (Direct Cost: ¥1,800,000)
KeywordsIntegrable geodesic flow / Integrable system / Hamiltonian mechanics / Symplectic geometry / Riemannian geometry / Liouville manifolds / Geodesic flow / Semiclassical approximation / シンブレクティック幾何学 / ケーラー・リウヴィル多様体 / トーリック多様体 / マスロフの量子化条件
Research Abstract

We investigated the structures of Kahler-Liouville manifolds which are not necessarily of type (A). As a consequence, we showed that every compact, proper Kahler-Liouville manifold has a bundle structure such that the fiber is a Kahler-Liouville manifold whose geodesic flow is integrable, and the base is (locally) a product of one-dimensional Kahler manifolds. The fiber naturally possesses the structure of toric variety. Also, we obtain another class, called of type (B), of Kahler-Liouville manifolds whose geodesic flows are integrable.
Also, we obtained many examples of "Hermite-Liouville" manifolds whose geodesic flows are integrable. The first examples are those defined over Hopf surfaces. Others are those defined over complex projective spaces. In the latter case, the idea of construction is as follows. We use two structures of real Liouville manifolds on the real projective space. One of them is used to prepare the "frame of complexification", while the other is used to produce a comlexified metric and first integrals. If those two Liouville structures are the same, then the result becomes Kahler-Liouville manifold.
Moreover, we studied spectra of the laplacian on Liouville surfaces diffeomorphic to 2-sphere. We decomposed the defining equation of the eigenfunctions into a pair of ordinary differential equations on circles, and applied "semiclassical approximation" to them. As a result, we found that this method gives new approximations when the corresponding invariant tori tend to a critical one.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report

Research Products

(20 results)

All Other

All Publications

  • [Publications] K.Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math.Annalen. (in press).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Izumiya(et al.): "A time-like surface in Minkonski 3-space which contains light-like lines"J.of Geometry. 64. 95-101 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Izumiya: "Singularities of solutions for first order partial differential equations"London Math.Soc.Lecture Notes. 263. 419-440 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] G.Ishikawa: "Singularities of developable surfaces"London Math.foc.Tecture Notes. 263. 403-418 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] G.Ishikawa: "Topological classification of the tangent developables of space curves"J.of London Math.Soc. 62-2. 583-598 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Igarashi: "Some examples of the Hermito-Lionville structure on the classical Hopf surface"Diff.Geom.and Appl.,Masaryk Univ.,Brno. 195-202 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math.Ann.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Izumiya: "A time-like surface in Minkowski 3-space which contains light-like lines"J.of Geom.. 64. 95-101 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Izumiya: "Singularities of solutions for first order partial differential equations"London Math.Soc., Lect.Notes. 263. 419-440 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] G.Ishikawa: "Singularities of developable surfaces"London Math.Soc., Lect.Notes. 263. 403-418 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] G.Ishikawat: "Topological classification of the tangent developables of space curves"J.of London Math.Soc.. 62-2. 583-598 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Igarashi: "Some examples of the Hermite-Liouville structure on the classical Hopf surface"Diff.Geom.and Appl., Masaryk Univ., Brno. 195-202 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Kiyohara: "Two-dimensional geodisic flons having first integrals of higher degree "Math・Annalen. (in press).

    • Related Report
      2000 Annual Research Report
  • [Publications] G・Ishikawa: "Topological classification of the tangent developables of space curves"J.of London Math.Soc.. 62・2. 583-598 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 清原 一吉: "リウヴィルの曲面上の半古典近似"数理科学研究所講究録. (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] S.Izumiya: "A time-like surface in Minkowski 3-space which contains light-like lines"Journal of Geometry. 64. 95-101 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] S.Izumiya: "The rectifying developable and the spherical Darboux image of a space curve"Banach Center Publication. 50. 137-149 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] S.Izumiya: "Singularities of solutions for first order partial differential equations"Lecture Notes Series (London Math.Society). 263. 419-440 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] G.Ishikawa: "Singularities of developable surfaces"Lecture Notes Series (London Math.Society). 263. 403-418 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] G.Ishikawa: "Determinacy, Transversality and Lagrange Stability"Banach Center Publications. 50. 123-135 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi