• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global Research of Geometry related with Poisson and Contact Manifolds.

Research Project

Project/Area Number 11640060
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSaitama University

Principal Investigator

MIZUTANI Tadayoshi  Saitama University, Dept. of Math., Professor, 理学部, 教授 (20080492)

Co-Investigator(Kenkyū-buntansha) NAGASE Masayoshi  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (30175509)
SAKAMOTO Kunio  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (70089829)
OKUMURA Masafumi  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (60016053)
FUKUI Toshizumi  Saitama Univ., Dept. of Math., Associate Professor, 理学部, 助教授 (90218892)
TAKEUCHI Kisao  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (00011560)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2001: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1999: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsNambu-Poisson manifold / Leibniz algebra / Leibniz cohomology / central extension / singular foilation / Pfaff system / Nambu-Poisson多様体 / ポアソン多様体 / ヤコビ多様体 / Nambu-Jacobi多様体 / 葉層構造 / Fundamental Identity / 南部多様体 / ポアソン・ブラケット / 南部・ヤコビブラケット
Research Abstract

In the first year of the term of the project, we investigated Nambu-Jacobi manifolds and gave a characterization of such manifolds interms of multi-vector fields. This result is written in the preprint Foliations assocaited with Nambu-Jacobi structures which is a joint paper with K. Mikami(Akita University).
In the second and the third year of the project, we were concerned with two topics. The one is the Leibniz algebra associated with a Nambu-Poisson manifold. We first observed that given a decomposable integrable p-form, the space of p+1-vector fields on the manifold have a structure of Leibniz algebra. Further we observed that this algebra structure depends only on the diffeomorphism class of the foliation defined by the p-form. Also, there is a natural Leibniz homomorphism from this algebra to the Lie algebra which is formed by the vector fields tangent to the foliation. As in the case of Lie algebras, this extension of algebra corresponds to a 2-dimensional cocycle of a Leibniz cohomology. These results are contained in the paper Y. Hagiwara-Tmizutani "Leibniz algebras associated with foliations" The other is study of the Pfaff system regarding it as a submanifold of the symplectic manifold T^*M. A. typical result of this direction is that the Pfaff system is completely integrable if it is a coisotropic submanifold of T^*M. From this vie point we described the Godbillon-Vey class as a intersection of certain naturally defined multi-vector fields.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (31 results)

All Other

All Publications (31 results)

  • [Publications] Tadayoshi Mizutani: "On Exact Poisson Manifolds of Dimension 3"Proceedings of FOLIATIONS : GEOMETRY AND DYNAMICS (ed. by P. Walczak, et al.). 371-386 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Fakui, T-C.Kuo, L.Paunescu: "Constructing Blow-analytic Isomorphisins"Ann. Inst. Fourier, Grenoble. 51. 1071-1087 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T Fukui, L.Paunescu: "Stratification Theory from the Weighted Point of View"Canadian Journal of Mathematics. 53. 73-97 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masayoshi Nagase: "Twistor space and the Seiberg-Witten equation"Saitama Mathematical Journal. 18. 39-60 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masayoshi Nagase: "The adiabatic limits of signature operators for Sping manifolds"Osaka Journal of Mathematics. 38. 541-564 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masayoshi Nagase: "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Mathematical Journal. 164. 53-73 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 徳永浩雄, 島田伊知朗, 石川剛郎, 齋藤幸子, 福井敏純: "特異点の数理4 代数曲線と特異点"共立出版. 384 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Mizutani: "On Exact Poisson Manifolds of Dimension 3"Proc. of FOLIATIONS : GEOMETRY AND DYNAMICS (ed. by P. Walczak et al) World Scientific. 371-386 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nagase: "Twistor space and the Seiberg-Witten equation"Saitama Math. J.. 18. 39-60 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nagase: "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Math. J.. 164. 53-73 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nagase: "The adiabatic limits of signature operators for Spin manifolds"Osaka J. of Math.. 38. 541-564 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Djoric, M. Okumura: "0n contact submanifolds in complex projective space"Math. Nachr.. 202. 17-23 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Okumura: "CR submanifolds of maximal CR dimension of complex projective space"Bull. of the Greek Math. Soc.. 44. 31-39 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Fukui, J. Weyman: "Cohen-Macauley properties of Thom-Boardman strata I : Morin's ideal"Proc. London Math. Soc.. 80. 257-303 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Fukui, L. Paunescu: "Stratification theory from the weighted point of view"Canadian J. of Math.. 53. 73-97 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Fukui, T-C. Kuo, L. Paunescu: "Constructing Blow-analytic Isomorphisms"Ann. Inst. Fourier, Grenoble. 51. 1071-1087 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tadayoshi Mizutani: "On Exact Poisson Manifolds of Dimension 3"Proceedings of FOLIATIONS:GEOMETRY AND DYNAMICS(ed.by P.Walczak et al). World Scientific. 371-386 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Fukui, T-C.Kuo, L.Paunescu: "Constructing Blow-analytic Isomorphisms"Ann.Inst.Fourier,Grenoble. 51. 1071-1087 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Fukui, L.Paunescu: "Stratification Theory from the Weighted Point of View"Canad.J.Math.. 53. 73-97 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 徳永浩雄, 島田伊知朗, 石川剛郎, 齋藤幸子, 福井敏純: "特異点の数理4 代数曲線と特異点"共立出版. 384 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Tadayoshi Mizutani: "On exact Poisson manifolds of dimension 3"to appear in Proceedings of conference "Foliations : Geometry and Dynamics" (Warsaw 2000).

    • Related Report
      2000 Annual Research Report
  • [Publications] Masafumi Okumura: "CR submanifold of maximal CR dimension of complex projective space"Bulletin of the Greek Mathematical Society. 44. 31-39 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Fukui and L.Paunescu: "Modified analytic trivialization for weighted homogeneous function-germs"Journal of the Mathematical Society of Japan. 52. 433-446 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Fukui and J.Weyman: "Cohen-Maculay properties of Thom-Boardman strata I : Morin's ideal"Proceedings of London Mathematical Society . 80. 257-303 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Toshizumi Fukui : "Congruence for real curves in toric surface and Newton Polygons"Proceedings of XI Brazilian topology meetings (ed.by S.Firmo et al.). World Scientific. 148-167 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Masayoshi Nagase : "Twistor space and the Seiberg-Witten equation"Saitama Mathematical Journal. 16. 39-60 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Toshizumi Fukui: "Butterfies and umbilics of stable perturbations of analytic map-germs(C^5,0) → (C^4,0)in "Singularity theory (edited by Bill Bruce & David Mond)""London Mathematical Society Lecture Note Series, Cambridge University Press. 263. 369-378 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T. Fukui and L. Paunescu: "Modified analytic trivialization for weighted homogeneous function-germs"to appear in Journal of the Mathematical Society of Japan. 52. 433-446 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Toshizumi Fukui: "Congruence for real curves in toric surface and Newton polygons"to appear in Proceedings of XI-th Brazilian meeting of topology, World Scientific.

    • Related Report
      1999 Annual Research Report
  • [Publications] T. Fukui and J. Weyman: "Cohen-Macaulay properties of Thom-Boardman strata I: Morin's ideal"to appear in Proceedings of London Mathematical Society.

    • Related Report
      1999 Annual Research Report
  • [Publications] K. Takeuchi: "Totally real algebraic number fields of degree 9"Saitama Mathematical Journal. 17. 63-85 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi