• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Spin^q structures and the adiabatic limit

Research Project

Project/Area Number 11640061
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSaitama University

Principal Investigator

NAGASE Masayoshi  Saitama University, Dept. of Math., Professor, 理学部, 教授 (30175509)

Co-Investigator(Kenkyū-buntansha) SAKAMOTO Kunio  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (70089829)
MIZUTANI Tadayoshi  Saitama University, Dept. of Math., Professor, 理学部, 教授 (20080492)
OKUMURA Masafumi  Saitama Uiv., Dept. of Math., Professor, 理学部, 教授 (60016053)
EGASHIRA Shinji  Saitama Univ., Dept. of Math., Assistant Professor, 理学部, 助手 (00261876)
SAKAI Fumio  Saitama Univ., Dept. of Math., Professor, 理学部, 教授 (40036596)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2001: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1999: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsSpin / twistor / chiral anomaly / Dirac operator / 四元数
Research Abstract

As for the infinitesimal chiral anomaly used in physics, the head investigator felt some ambiguity about how to define that, what should be investigated, etc., as a mathematical object. In the project, he proposed its mathematical definition and tried to withdraw its essential part
His previous study says that a Spin^q manifold possesses a canonical CP^1-fibration and its total space called a twistor space has a canonical Spin structure. The structure induces the Dirac operator θ. First, its infinitesimal variation δ_χθ in the X-direction, where X is a cross-section of a certain adjoint bundle, and its anomaly denoted log det δ_χθ were defined from the mathematical viewpoint. Since the corresponding spinor bundle also changes it is nonsense to take naively the variation of θ. Hence it was essential how to interpret δ_χθ. Second, he tried to withdraw an essential part of the anomaly. After the analogy of the physical twistor theory and the creating theory of the universe, he considered the operation of collapsing each fiber into one point (returning to the pre-universe), i.e., the operation of taking the adiabatic limit, to produce its essential part denoted lim_<ε→0> log det δ_xθ_ε. In the latter half of the project, to investigate the limit was the main purpose. He conjectured the essential part lim_<ε→0> log det δ_χθ_ε depends essentially on the behavior when ε → 0 of Tr(δ_χθ_ε・θ_εe^<-tθ^<^2_ε>>) under the condition 0 < t < ε^a (a>0) and has nearly finished its study.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (21 results)

All Other

All Publications (21 results)

  • [Publications] Masayoshi Nagase: "Twistor space and the Seiberg-Witten equation"Saitama. Math. J.. 18. 39-60 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masayoshi Nagase: "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Math. J.. 164. 53-73 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masayoshi Nagase: "The adiabatic limits of signature operators for Sping manifolds"Osaka J. of Math.. 38. 541-564 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tadayoshi Mizutani: "On exact Poisson manifolds of dimension 3"Proc. of conference "Foliations : Gamelay and Dynamics".

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Djoric, M.Okumura: "On contact submanifolds in complex projective space"Math. Nachr.. 202. 17-23 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] F.Sakai, K.Tono: "Rational cuspidal curves of type (d, d-2) with one or two cusps"Osaka. J. of Math.. 37. 405-415 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 矢野 環: "君台観左右帳記の総合研究"勉誠出版. 852 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nagase: "Twistor space and the Seiborg-Witten equation"Saitama Math. J.. 18. 39-60 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nagase: "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Math. J.. 164. 53-73 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nagase: "The adiabatic limits of signature operators for Spin^* manifolds"Osaka J. Math.. 38. 541-564 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Mizutani: "On exact Poisson manifolds of dimension 3"Proc. of Conference "Foliations : Geometry and Dynamics.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Mikami, T. Mizutani: "Foliations associated with Nambu-Jacobi structures"(preprint).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Djoric and M. Okumura: "On contact submanifolds in complex projective space"Math. Nachr.. 202. 17-23 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Okumura: "CR submanifolds of maximal CR dimension of complex projective space"Bull. of the Greek Math. Soc.. 44. 31-39 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Sakamoto: "Variational problems of normal curvature tensor and concircular scalar fields"(preprint).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] F. Sakai, K. Tono: "Rational cuspidal curves of type (d,d-2) with one or two cusps"Osaka J. Math.. 37. 405-415 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] F. Sakai: "Defining equations of rational cuspidal curves with one or two place at infinity"Tagungsbericht, Affine Algebraic Geometry, Oberwolfach. 16-16 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Masayoshi Nagase: "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Math.J.. 164. 53-73 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Masayoshi Nagase: "The adiabatic limits of signature operators for Spin^q manifolds"Osaka J.Math.. 38. 541-564 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Masayoshi Nagase: "Twistor space and the Seiberg-Witten equations"Saitama Math.J,. 18. 39-60 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Masayoshi Nagase : "Twistor spaces and the adiabatic limits of Dirac operators"Nagoya Math.J,. (発表予定).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi