• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of space of Riemannian manifolds

Research Project

Project/Area Number 11640075
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyushu University (2001-2002)
Osaka University (1999-2000)

Principal Investigator

OTSU Yukio  Kyushu University, Department of Mathematical Sciences, Ass. Prof., 大学院・数理学研究院, 助教授 (80233170)

Co-Investigator(Kenkyū-buntansha) GOTO Ryushi  Osaka University, Department of Sciences, Ass. Prof., 大学院・理学研究科, 助教授 (30252571)
SHIOYA Takashi  Tohoku University, Department of Sciences, Ass. Prof., 大学院・理学研究科, 助教授 (90235507)
YAMADA Koutarou  Kyushu University, Department of Mathematical Sciences, Prof., 大学院・数理学研究院, 教授 (10221657)
山口 孝男  九州大学, 大学院・数理学研究院, 教授 (00182444)
大山 陽介  大阪大学, 大学院・理学研究科, 講師 (10221839)
大和 健二  大阪大学, 大学院・理学研究科, 助教授 (70093474)
和田 健志  大阪大学, 大学院・理学研究科, 助手 (70294139)
柳川 浩二  大阪大学, 大学院・理学研究科, 助手 (40283006)
Project Period (FY) 1999 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1999: ¥900,000 (Direct Cost: ¥900,000)
KeywordsAlexandrov space / Hausdorff distance / comparions geometry / Laplacian / Convergence theorem / 大域リーマン幾何 / エントロピー / リーマン多様体
Research Abstract

Let us denote by A the space of Alexnadrov spaces of bounded curvature below and Hausdorff dimension above equipped with Hausdorff distance and by I the space of upper-semicontinuous functions on A. We call I the space of invariants. An ordered finite set of points of metric space is called a net, which is a discretization of the metric space. Since the configuration space of all nets is identified with the product of the space, the set N of pairs of spaces in A and its nets can be interpreted as a fiber space over A. We consider a map that assign the matrix of mutual distances of two points for each net. In this way we can represent N as a subspace of some Banach space. Then we introduce other maps form N to some Euclidian space that take local information of the above distance matrix. Especially we defined discrete Laplacian similar to the Laplacian of functions of Riemannian manifold. We introduced new statistical method to take average of discrete Laplacian on configuration space of nets. In this way we have showd that the eigenvalues and eigenvectors of discrete Laplacian converge to the limit independent of the choice of nets ; we also proved that coincides with the Laplacian in the sense of Kuwae-Machigashira-shioya in some sense.
Next we defined new structure on A by comparing two discrete Laplacian of different spaces and nets because they are same member of matrix space. Since in information geometry the relative entropy of two distributions determines Reimannian metric, we first introduced stationary Markov chain form the Laplacian, then we apply the relative entropy for them; finally we construct continuum limit of them, which is a generalization of Hausdorff distance.

Report

(5 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] Y.Otsu: "Alexnadorv空間入門"MSJ日本語メモアール. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Kuwae, Y.Machigashira, T.Shioya: "Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces"Math. Z.. 238. 269-316 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Shioya, T.Yamaguchi: "Collapsing three-manifolds under a lower curvature bound"J. Differential Geom. 56. 1-66 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Yamada et al.: "An analogue of minimal surface theory in SL(n,C)/SU(n)"Trans. Amer. Math. Soc.. 354. 1299-1325 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y. Otsu: "Laplacian of random nets of Alexandrov space"preprint.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y. Otsu, H. Tanoue: "The Riemannian structure of Alexandrov spaces withcurvature bounded above"preprint.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y. Otsu: "Alexnadorv"to appear in MSJ.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Kuwae, Y. Machigashira, T. Shioya,: "Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces"Math. Z.. 2, no.2. 269-316 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Shioya, T. Yamaguchi: "Collapsing three-manifolds under a lower curvature bound"Differential Geom.. 56, no.1. 1-66 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Yamada et. al.: "An analogue of minimal surface theory in $SL(n,C) /SU(n)$"Trans. Amer. Math. Soc.. 354. 1299-1325 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Kuwase, T.Shioya: "On generalized measure contraction property and functionals over Lipschitz maps"Potenitial Anal.. 15. 105-121 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Yamada et al.: "An analogue of minimal surface theory in SL(n, C)/SU(n)"Trans.A.M.S.. 354. 1299-1325 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Kuwae, Machigashira, Shioya: "Soboler spaces, raplacian and heat Kernel or Alexundrov space"Math.Z.. 238. 269-316 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shioya, Yamaguchi: "Collapsing thue man. jolds under a lower cunktne bokl"J.Ditterential geirnehy. 56. 1-66 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Shioya: "Convergence of Alexandrons paces and spectrum of Laplacian"J.Math.Soc.Japan. 53. 1-15 (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi