• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

STUDY ON KNOT INVARIANTS AND ITS APPLICATIONS

Research Project

Project/Area Number 11640090
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka City University

Principal Investigator

KANENOBU Taizo  Osaka City University, Faculty of Science, Associate Professor, 大学院・理学研究科, 助教授 (00152819)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Yoshitake  Osaka City University, Faculty of Science, Lecturer, 大学院・理学研究科, 助教授 (20271182)
KAMADA Seiichi  Osaka City University, Faculty of Science, Associate Professor, 大学院・理学研究科, 助教授 (60254380)
KAWAUCHI Akio  Osaka City University, Faculty of Science, Professor, 大学院・理学研究科, 教授 (00112524)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2001: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1999: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsknot / link / ribbon 2-knot / virtual knot / HC-move / finite type (Vassiliev) invariant / tangle / polynomial invariant / タングル手術 / カウフマン・ブラケット多項式 / ジョーンズ多項式 / ホンフリー多項式 / Q多項式 / 手錠型空間グラフ / 結び目(knot) / 仮想弧表示 / 禁じ手 / α-2不変量 / デルタ結び目解消操作 / Vassiliev invariant / finite type invariant / ribbon knot / Alexander polynomial / HOMFLY polynomial / Conway polynomial
Research Abstract

We studied on finite type invariants or Vassiliev invariants of ribbon 2-knots, HC-moves for ribbon 2-knots, some properties of HOMFLY polynomials of links, tangle surgeries preserving some polynomial invariants, and the finite type invariants for handcuff graphs.
We defined finite type invariants for a class of ribbon 2-knots. Then we showed that each coefficient in the Taylor expansion of the normalized Alexander polynomial of a ribbon 2-knot is a Vassiliev invariant. There, we constructed a 'Vassiliev-like' filtration in two ways. However, we proved that the two filtrations are the same, and thus, the two finite type invariants are coincident.
We defined the HC-move as an unknotting operation of a ribbon 2-knot as a generalization of a Δ-move for a 1-knot. Then we gave some relatins between the HC-move and the α_2-invariant of a ribbon 2-knot, which is the order 2 finite type invariant. This allowed us to decide the HC-unknotting numbers of some ribbon 2-konts.
Making use of the virtual arc representation of a ribbon 2-knot due to Satoh, we saw that the HC-move corresponds to one of the "forbidden moves", which unknot every virtual knot. Then : (1) We proved that any virtural knot can be unknotted by the forbidden moves. (2) We proved the HC-move is an unknotting operation for the virtual arc representation of a ribbon 2-knot. (3) We gave some relation between the Δ-move for a 1-knot and the HC-move for the spun 2-knot.
We give formulas for the second and third coefficient polynomials of the HOMFLY polynomial of a link which are described by the linking numbers and the coefficient polynomials of the HOMFLY polynomials of the proper sublinks.
We introduce some tangle surgeries on the double of a tangle. If the tangle satisfies certain conditions, then the resulting link has the same polynomial invariant as the original one.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (34 results)

All Other

All Publications (34 results)

  • [Publications] Kanenobu, T., Habiro, K., Shima, A.: "Finite type invariants of ribbon 2-knots"Contemporary Math. Amer. Math. Soc.. 233. 187-196 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanenobu, T.: "An evaluation of the coefficient polynomial of the HOMFLY polynomial of a link"Knots in Hellas '98, Proceedings of the Conference on Knot Theory and its Ramifications. 131-137 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanenobu, T.: "An unkuotting operation on ribbon 2-knots"Journal of Knot Theory and its Ramifications. 9. 1011-1028 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanenobu, T.: "Forbidden moves unknot a virtual knot"Journal of Knot Theory and its Ramifications. 10. 89-96 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanenobu, T.: "Vassiliev knot invariants of order 6"Journal of Knot Theory and its Ramifications. 10. 645-665 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanenobu, T.: "Virtual arc presentation and HC-moves of ribbon 2-knots"Journal of Knot Theory and its Ramifications. (出版予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Habiro, T. Kanenobu and A. Shima: "Finite type invariants of ribbon 2-knots"In H. Nencka (Eds.), Low Dimensional Topology Amer. Math. Soc.. 187-196 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kanenobu and Y. Miyazawa: "The second and third terms of the HOMFLY polynomial of a link"Kobe J. Math.. 16. 147-159 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kanenobu: "An evaluation of the coefficient polynomial of the HOMFLY polynomial of a link"knots in Hellas '98, Proceedings of the Conference on Knot Theory and its Ramification. 131-137 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kanenobu: "An unknotting operation on ribbon 2-knots"J. Knot Theory Ramifications. 9. 1011-1028 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kanenobu: "Forbidden moves unknot a virtual knot"J. Knot Theory Ramifications. 10. 89-96 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kanenobu: "Vassiliev knot invariants of order 6"J. Knot Theory Ramifications. 10. 645-665 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kanenobu and Shima, A.: "Two filtrations of ribbon 2-knots"Topology Appl.. (to appear)..

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kanenobu: "Virtual arc presentation and HC-moves of ribbon 2-knots"J. Knot Theory Ramifications. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S. Kamada, A. Kawauchi and T. Matumoto: "Combinatorial moves on ambient isotopic submanifolds in a manifold"J. Math. Soc. Japan. 53. 321-331 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] A. Kawauchi: "Floer homology of topological imitations of homology 3-spheres"J. Knot Theory Ramifications. 7. 41-60 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kanenobu, T.: "Forbidden moves unknot a virtual knot"Journal of Knot Theory and its Ramifications. 10・1. 89-96 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kanenobu, T.: "Vassiliev knot invariants of order 6"Journal of Knot Theory and its Ramifications. 10・5. 645-665 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kanenobu, T.: "An unknotting operation on ribbon 2-knots"Journal of Knot Theory and its Ramifications. (出版予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] Kamada, S., Kawauchi, A., Matumoto, T.: "Combinatorial moves on ambient isotopic submanifolds in a manifold"J.Math.Soc.Japan. 53・2. 321-331 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Carter, J.S., Jelsovsky, D., Kamada, S., Saito, M.: "Quandle homology groups, their Betti numbers, and virtual knots"J.Pure Applied Algebra. 157. 135-155 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kamada, S.: "Wirtinger presentations for higher-dimensional manifold knots obtained from diagrams"Fund.Math.. 168・2. 105-112 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 金信泰造: "An evaluation of the coefficient polynomial of the HOMFLY polynomial"Knots in Hellas '98 (World Sci. Publ.). 131-137 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 金信泰造: "An unknotting operation of ribbon 2-knots"J. Knot Theory Ramifications. 9・8. 1011-1028 (2200)

    • Related Report
      2000 Annual Research Report
  • [Publications] 金信泰造: "Vassilier knot invariants of order 6"Proc. Conf. Knots in Hellas '98. (出版予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 金信泰造: "Two filtrations of ribbon 2-knots"Topology Appl.. (出版予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 金信泰造: "Forbidden moves unknot a virtual knot"J. Knot Theory Ramifications. (出版予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 金信泰造: "Virtual are presentations and HC moves of ribbon 2-knots"Proc. of Knots '2000. (出版予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 金信 泰造: "The second and third terms of the HOMFLY polynomial of a link"Kobe J. Math.. 16・2. 147-159 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 葉広 和夫: "Finite type invariants of ribbon 2-knots"Contemporary Math.. 233. 187-196 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 金信 泰造: "Vassilier knot invariants of order 6"Proc. Conf. Knots in Hellas 1998. (出版予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] 金信 泰造: "An evaluation of the coefficient polynomial of the HOMFLY polynomial"Proc. Conf. Knots in Hellas 1998. (出版予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] 金信 泰造: "Two filtrations of ribbon 2-knots"Topology Appl.. (出版予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] 河内 明夫: "The quadratic form of a link"Contemporary Math.. 233. 97-116 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi