• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

DEFORMATION QUANTIZATION AND ITS APPLICATION

Research Project

Project/Area Number 11640095
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSCIENCE UNIVERSITY OF TOKYO

Principal Investigator

YOSHIOKA Akira  SCIENCE UNIVERSITY OF TOKYO MATHEMATICS ASISTANT PROFESSOR, 理学部, 助教授 (40200935)

Co-Investigator(Kenkyū-buntansha) MIYAZAKI Naoya  KEIO UNIVERSITY, MATHEMATICS, ASSISTANT PROFESSOR, 経済学部, 助教授 (50315826)
MAEDA Yoshiaki  KEIO UNIVERSITY, MATHEMATICS, PROFESSOR, 理工学部, 教授 (40101076)
OMORI Hideki  SCIENCE UNIVERSITY OF TOKYO MATHEMATICS PROFESSOR, 理工学部, 教授 (20087018)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 1999: ¥1,900,000 (Direct Cost: ¥1,900,000)
KeywordsDEFORMATION QUANTIZATION / STAR PRODUCT / NONCOMMOTATIVE GEOMETRY / QUANTIZATION / ASYHPTOTIC ANALYSIS / SYMPLECTIC GEOMETRY / HAMILTONIAN MECHANICS / Deformation quantization / star product / noncommutative geometry / quantization / asymptotic analysis / symplectic geometry / Hamiltonian mechanics / STAR-PRODUCT / NONCOMMUTATIVE GEOMETRY / ASYMPTOTIC ANALYSIS
Research Abstract

This researchment is two fold ; (i) geometric aspect of Deformation quantization via Weyl manifolds, (ii) investigation of convergent deformation quantization with repect to the deformation parameter h. We obtain the following. (i) The moduli space of Weyl manifolds are the formal power serires with coefficients in the 2nd cohomology classes of the base manifol. Using the cohomolgy corresponding to the Weyl manifold, we construct a contact Weyl manifold which contains Weyl manifold as a subbundle. On contact Weyl manifold, we also constuct a connection whose curvature form determines the cohomology class of the Weyl manifold. We show this connection is an extension of Fedosov connection and proved that the cohomolgy class given by the curvature coincides with the cohomology class of the Weyl manifold, hence we show the Poincare-Cartan class of Weyl manifold and the cohomology class of the curvature of Fedosov connection are the same thing. (ii) Using the Moyal product formula, we set certain Frechet space of certain holomophic functions on the multidimensional complex plane where the Moyal products are absolutely convergent. Singular exponent of holomorphic functions are introduced with respect which the star products breaks the associativity of product. We also investigate a star exponential functions of quadratic functions. Althoug the Frechet space does not contain the exponentials of the quadratic functions, the star product is well defined between the quadratic exponentials and holomorphic function having the exponent less than the singular one. Certain properties are investigated for the group generated by the quadratic exponential functions. Especially, the group is considered an extension of the special linear groups.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (35 results)

All Other

All Publications (35 results)

  • [Publications] AKIRA YOSHIOKA: "WEYL MANIFOLD AND QUANTIZED CONNECTION"LOBACHEVSKII JOURNAL OF MATHEMATICS. 4. 177-206 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] AKIRA YOSHIOKA: "A REMARK ON CONTACT STRUCTURE ON WEYL MANIFOLD AND FEDOSOV CONNECTION"REPORT ON MATHEMATICAL PHYSICS. 43. 357-366 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI OMORI: "INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRL"LOBACHEVSKII JOURNAL OF MATHEMATICS. 4. 13-46 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 吉岡朗: "ワイル多様体のコンタクト構造とDEFORMATION QUANTIZATION"数理解析研究所講究録. 1119. 1-18 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI OMORI: "SINGULAR SYSTEMS OF EXPONENTIAL FUNCTIONS"PROCEEDINGS OF WORKSHOP at SHONAN (KLUWER PRESS). 171-188 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI OMORI: "DEFORMATION QUANTIZATION OF FRECHET-POISSON ALGEBRAS,CONVERGENCE OF THE MOYAL PRODUCT"PROCEEDINGS OF THE CONFERENIE MOSHF FLATD KLOWER ALADEMIC PUALISMERS IN THE SERIES MATHEMATICAL PHYSICS. 2. 233-246 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 大森英樹: "ANOMHLOUS QUADRATIC EXPONENTIALS"数理解析研究所講究録. 1150. 128-132 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 大森英樹: "AN EXAMPLE OF CONVERGENT STAR PRODUCT"数理解析研究所講究録. 1180. 141-165 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 吉岡朗: "CONTACT WEYL MANIFOLD OVER A SYMPLECTIC MANIFOLD"AdVANCED STUDIES IN PURE MATHEMATICS. (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 大森英樹: "MONCOMMUTATIVE WORLD AND ITS GEOMETRICAL PICTURE"AMS TRANSLATION OF SUGAKO EXPOSITIONS. (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 前田吉昭: "NONCOMHUTATIVE DIFFERNTIAL GEDMETRY AND ITS APPLICATION PHYSIS"KVUWER ACADEMIC PUBLISHERS. 305 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] AKIRA,YOSHIOKA: "WEYL MANIFOLD AND QUANTIZED CONUECTION"LOBACHEVSKII JOURNAL OF MATHEMATILS. Vol.4. 177-206 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] AKIRA,YOSHIOKA: "A REMARK ON CONTACT STRUCTURES, ON WEYL MANIFOLD AND FEDOSOV CONNECTION"REPORT ON MATHEMATICAL PHYSICS. Vol.43. 357-366 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI,OMORI: "INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY"LOBACHVSKII JOURNAL OF MATHEMATICS. Vol.4. 13-46 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] AKIRA,YOSHIOKA: "CONTACT STRUCTURE ON WEYL MANIFOLD AND DEFORMATION QUANTIZATION"SURIKEN KOKYO-ROKU. Vol.1119. 1-18 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI,OMORI: "SINGULAR SYSTEM OF EXPONENTIAL FONCTIONS"PROCEEDINGS OF WORKSHOP AT SHONAN, KLUWER ACADEMIC PRESS. 171-188 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI,OMORI: "DEFORMATION QUANTIZATION OF FRECHE-POISSON ALGEBRAS-CONVERGENCE OF THE MOYAL PRODUCT"SERIES MATHEMATICAL PHYSICS KLUWER ACADEMIC PUBLISHERS. Vol.2. 233-246 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI,OMORI: "ANOMOLOUS QUADRATIC EXPONENTIALS"SURIKEN KOKYU ROKU. Vol.1150. 128-132 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI,OMORI: "AN EXAMPLE OF CONVERGENT STAR PRODUCT"SURIKEN KOKYU ROKU. Vol.1180. 141-165 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] AKIRA,YOSHIOKA: "CONTACT WEYL MAUIFOLD OVER A SYMPLECTIC MANIFOLD"ADVANCED STUDIES IN PURE MATHEMATICS. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] HIDEKI,OMORI: "NONCOMMUTATIVE WORLD AND ITS GEOMETRICAL PICTURE"AMS TRANSLATION OF SUGAKU EXPOSITION. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] YOSHAKI,MAEDA: "NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND ITS APPLICATION TO PHYSICS"KLUWER ACADEMIC PUBLISHERS, PROCEEDINGS OF THE WORKSHOP AT SHONAN. 305 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 大森英樹,前田吉昭,宮崎直哉,吉岡朗: "Deformation quantization of Frechet-Poisson algebras : Convergence of the Moyal product"The proceedings of the Coference Moshe Flato 1999,Kluwer Academic Publishers in the series Mathematical Physics Studies,. 2. 233-246 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 大森英樹,前田吉昭,宮崎直哉,吉岡朗: "Singular systems of exponential functions"Noncommutative differential geometry and its application to physics-proceedings of the Workshop at Shonan, June 1999. 171-188 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 大森英樹,前田吉昭,宮崎直哉,吉岡朗: "Anomalous quadratic exponentials in the star-products. Lie groups, geometric structures and differential equations-one hundred years after Sophus Lie (Japanese))."数理研講究録:ソーフィス・リー没後百年記念国際研究集会報告集. 1150. 128-132 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 大森英樹,前田吉昭,宮崎直哉,吉岡朗: "An Example of Convergent Star Product,"数理研講究録:Dynamical Systems and Differential Geometry 研究集会報告集. 1180. 141-165 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 吉岡朗: "Contact Weyl manifold over a symplectic manifold"Advanced Studies in Pure Mathematics : Lie Groups, Geometric Structures and Differential Equations. (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 大森英樹: "Noncommtative world, and its geometrical picture"AMS translation of Sugaku expositions. (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 前田吉昭: "Noncommutative Differential Geometry and its Application to Physics,"Kluwer academic publishers. 305 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] AKIRA YOSHIOKA: "WEYL MANIFOLD AND QUANTIZED CONNECTION"LOBACHEVSKII JOURNAL OF MATHEMATICS. 4. 177-206 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] AKIRA YOSHIOKA: "A RENARK ON CONTACT STRUCTURE ON WEYL MANIFOLD AND FEDOSOV CONNECTION"REPORT ON MATHEMATICAL PHYSICS. 43. 357-366 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] HIDEKI OMORI: "INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY"LOBACHEVSKII JOURNAL OF MATHEMATICS. 4. 13-46 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 吉岡 朗: "ワイル多様体のコンタクト構造とDEFORMATION QUANTIZATION"数理解析研究所講究録. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] HIDEKI OMORI: "ANOMALOUS EXPONENT FOR CONVERGENT STAR-PRODUCT ON ERECHET-POISSON ALGEBRAS"PROCEEDINGS OF THE CONFERENCE MOSHE FLATO 1999. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] HIDEKI OMORI: "SINGULAR SYSTEMS OF EXPONENTIAL FUNCTIONS"TO APPEAR IN PROCEEDINGS OF WORKSHOP ON NONCOMMUTATIV DIFFERENTIAL GEOMETRY AND ITS APPLICATION TO PHYSICS.

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi