• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Integrability of Evolution Equations with Computer

Research Project

Project/Area Number 11640140
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionDOSHISHA UNIVERSITY

Principal Investigator

WATANABE Yoshihide  Doshisha University, Faculty of Engineering, Professor, 工学部, 教授 (50127742)

Co-Investigator(Kenkyū-buntansha) KAJIWARA Kenji  Doshisha University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (40268115)
OHMIYA Mayumi  Doshisha University, Faculty of Engineering, Professor, 工学部, 教授 (50035698)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2000: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1999: ¥800,000 (Direct Cost: ¥800,000)
Keywordsevolution equation / integrability / Hamiltonian structure / discrete Euler operator / spectrum / Darboux transformation / discrete Painleve equation / singularity confinement test / バイハミルトン構造 / 可積分系 / 対称性 / τ関数 / 離散変分問題 / ラムダ作用素 / KdV多項式 / 散乱行列
Research Abstract

・The Hamiltonian formalism for semi-discrete evolution equations is introduced by using the Schouten bracket defined in the ring with the shift operator. It is hoped that integrable evolution equations admit bi-Hamiltonian structure and it is proved that some of the semi-discrete evolution equations including the Toda-Lattice equation admit bi-Hamiltonian structure. However, there may be some equations which are integrable in some sense but do not seem to admit bi-Hamiltonian structure.
・The discrete Euler operator defined in terms of the difference operator is derived from the discrete variational problem and properties of which is examined in detail. Especially, the relation between such Euler operator and the usual discrete Euler operator defined in terms of the shift operator is clarified and by using these relations, the kernel and the image of this new type of discrete Euler operator is determined. Further, if one uses such discrete Euler operator, instead of the usual Euler opera … More tor, in the construction of Hamiltonian formalism for semi-discrete evolution equations, it is proved that it has some advantages over the usual formalism.
・A Hamilton's canonical equation with finite degrees of freedom, which is equivalent to the stationary KdV equation is derived from the Deift-Trubowitz type algebraic trace formula. This equation is proved to be completely integrable in Liouville's sense, and explicitly involves the information on the spectrum for algebro-geometric potentials which is constructed from the solution of the equation. Further, it is shown that, under certain degeneracy condition, the equation is reduced to the Neumann system, which describes the motion of a harmonic oscillator restricted to the sphere. Also, the relation between the equation and the Dubrovin-Novikov system is clarified.
・Study on the symmetry and the τ functions of the continuous and discrete Painleve equations is accomplished. Especially, starting with the determinant formulae for the classical solution of the Painleve equation, it is proved that such determinant flormulae are also valid for transcendental solutions of the Painleve equation. In order to investigate the solutions of the discrete equations, it is shown to be effective to use singularity confinement test and in this view point, symmetry of the solution of the discrete Painleve equation is exploited. Less

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] 安田久也: "離散Euler作用素とSemi-discrete発展方程式"九州大学応用力学研究所研究集会報告. 11ME-S4. 16-21 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 渡邊芳英: "Semi-Discrete発展方程式のbi-Hamilton構造"同志社大学理工学研究所研究報告. 41(4). 9-19 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mayumi Ohmiya: "Spectrum of Darboux Transformation of Differential Operator"Osaka Journal of Mathematics. 36. 949-980 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mayumi Ohmiya: "Trace Formula and Complete Integrable Hamiltonians"AMS/IP Studies in Advanced Mathematics. 16. 307-321 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Kajiwara: "A Generalization of determinant formulae for the solutions of Painleve II and XXXIV equations"Journal of Physics A Math.Gen.. 32. 3763-3778 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Kajiwara: "Bilinearization of discrete soliton equations through the singularity confinement test"Chaos, Solitons and Fractals. 11. 33-39 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 中村佳正(編): "可積分系の応用数理"裳華房. 316 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yoshihide Watanabe: "Bi-Hamiltonian Structure of Semi-Discrete Evolution equations"The Science and Engineering Review of Doshisha University. 42 (4). 9-19 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Hisaya Yasuda: "Discrete Euler Operator and Semi-Discrete Evolution equations"Reports of RIAM Symposium. No.11 ME-S4. 16-21 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Jun'ya Shiomi: "An Application of KdV theories to the Numerical Analysis for the 1-dimensional Potential Scattering"Reports of RIAM Symposium. No.10 ME-S1. 44-50 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mayumi Ohmiya: "Spectrum of Darboux Transformation of Differential Operator"Osaka J.Math.. 36. 949-980 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mayumi Ohmiya: "Trace Formula and Complete Integrable Hamiltonians"AMS/IP Studies in Advanced Math.. 16. 307-321 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mayumi Ohmiya: "Trace Formulae and Integrable Hamiltonian Systems"Reports of RIAM Symposium. No.11 ME-S4. 147-152 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Kajiwara: "A Generalization of determinant formulae for the solutions of Painleve II and XXXIV equations"J.Phys.A Math.Gen.. 32. 3763-3778 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Kaijiwara: "On the Umemura polynomials for the Painleve III equations"Phys.Lett.A. 260. 462-467 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Kenji Kajiwara: "Bilinearization of discrete soliton equations through the singularity confinement test"Chaos, Solitons and Fractals. 11. 33-39 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Ken-ichi Maruno: "A Note on Integrable Systems Related to Discrete Time Toda Lattice"CRM Proceedings and Lecture Notes. 25. 303-314 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 渡邊芳英: "Semi-Discrete発展方程式のbi-Hamilton構造"同志社大学理工学研究報告. 41(4). 9-19 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 安田久也: "離散Euler作用素とSemi-discrete発展方程式"九州大学応用力学研究所研究集会報告. 11ME-S4. 16-21 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Mayumi Ohmiya: "Trace formulae and Completely integrable Hamiltonian"Studies in Advanced Math.. 16. 307-321 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kenji Kajiwara: "A Generalization of Determinant Formulae for Solutions of Pain leve II and XXXIV Equation"J.Phys.A. 32. 3763-3778 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kenji Kajiwara: "On the Umemura Poynomicals for the Painleve III Equation"Phys.Lett.A. 260. 462-467 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kenji Kajiwara: "Bilinearization of Discrete Equations through the Singularity Confinement Test"Chaos, Solitons and Fractals. 11. 33-40 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 中村佳正(編): "可積分系の応用数理"裳苹房. 316 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Mayumi Ohmiya: "Spectrum of Darboux transformation of differential operator"Osaka J.Math.. 36. 193-221 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Mayumi Ohmiya: "Trace formulae and completely integrable Hamiltomians,"Proceeding of an Intermational Conference held at Univ,Alabama. 283-297 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 大宮真弓、塩見純也、北山健児: "1次元ポテンシャル散乱問題に対するKdV諸理論の応用"研究会報告IOME-SI「ソリトン理論の新展開」. 44-50 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kenji Kajiyama, Tetsu Masuda: "On the Umemura Polynomials for the Painleve III Equation"Phys. Lett. A. 260. 462-467 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi