• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Diffusion Processes and Diffusion Equations in Random Environment

Research Project

Project/Area Number 11640171
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionNanzan University (2000)
Kyushu University (1999)

Principal Investigator

KUNITA Hiroshi  Nanzan Univ.Math.Sci., Professor, 数理情報学部, 教授 (30022552)

Co-Investigator(Kenkyū-buntansha) YASUDA Kumi  Kyushu Univ.Math., Assistant, 大学院・数理学研究科, 助手 (40284484)
SUGITA Hiroshi  Kyushu Univ.Math., Associate Professor, 大学院・数理学研究科, 助教授 (50192125)
TANIGUCHI Setuo  Kyushu Univ.Math., Associate Professor, 大学院・数理学研究科, 助教授 (70155208)
FUKAI Yasunari  Kyushu Univ.Math., Assistant, 大学院・数理学研究科, 助手 (00311837)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 1999: ¥2,400,000 (Direct Cost: ¥2,400,000)
KeywordsStochastic differential equation / Levy process / Malliavin calculus / Hormander's hypoellipticity condition / 加法過程 / 準だ円性 / ストカスティック・フロー / p-進体 / ランダム・ウオーク
Research Abstract

There are extensive works on SDE (stochastic differential equation) based on Brownian motions. Conditions for the existence of the smooth density for the law of the solution have been clearified by using the Malliavin calculus. In this research, we restricted our attention to SDE with jumps based on Levy process and investigated the condition such that the law of the solution has a(smooth) density. As to the equation, we studied the canonical SDE generated by a finite number of vector fields and the same dimensional Levy processes. First, we showed that the law has a smooth density if both the vector fields and Levy processes are nondegenerate. Then we proved that the law has a density function in the case where the vector fields may be degenearate but satisfy Hormanders condition. These results are extensions of the works by Malliavin and Kusuoka-Stroock, who studied the existence of the smooth density in the case of a SDE driven by a Brownian motion.
For the proof, we need the Malliavin calculus on the product of the Wiener space and the Poisson space. We unified the Picard's approach on the Poisson space and the Malliavin's approach on the Wiener space and further we obtained a criterion that the law of the random variable on the product space has a smooth density. The criterion includes Malliavin's on the Wiener space and Picard's on the Poisson space as special cases. We applied the criterion to the solution of SDE with jumps and proved the existence of the density for the law of the solution.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] 國田寛: "Analyticity and injectivety of convolution semigroups on Lie groups"Journal of Functional Analysis. 165. 80-100 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 國田寛: "Canonical SDE's based on semimartingales with spatial parameters, Part I, stochastic flows of diffeomorphisms"Kyushu J.Markematics. 53. 265-300 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 國田寛: "Canonical SDE's based on semimartingales with spatial parameters, Part II, Invert flows and backward SDE's"Kyushu J.Math.. 53. 301-331 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 國田寛: "Inoaricent measures for Levy flows of diffeomorphisms."Proc.Rogal Society of Edinburgh. 1130A. 925-946 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 谷口説男: "Stochastic oscillatory integrals with quadratic phase function and Jacobian equation"Probability Theory and Related Fields. 114. 291-308 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 谷口説男: "Levy's stochastic area and the principle of stationary phase"Journal of Functional Analysis. 172. 165-176 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] H.Kunita: "Analyticity and injectivity of convolution semigroups on Lie groups"Journal of Functional Analysis.. 165. 80-100 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] H.Kunita: "Canonical SDE's based on semi-martingales with spatial parameters, Part I Stochastic flows of diffeomorphisms"Kyushu J.Math.. 53. 265-300 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] H.Kunita: "Canonical SDE's based on semi-martingales with spatial parameters, Part II Inverse flows and backward SDE's"Kyushu J.Math.. 53. 301-331 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] H.Kunita: "Invariant measures for Levy flows of diffeomorphisms"Proc.Royal Society of Edinburgh. 1130A. 925-946 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Taniguchi: "Stocahstic oscilatory integrals with quadratic phase function and Jacobi equation"Probability Theory and Related Fields. 114. 291-308 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Taniguchi: "A remark on stochastic oscilating integrals with respect to a pinned Wiener measure"Kyushu J.Math.. 53. 151-162 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Taniguchi: "Levy's stochastic area and the principle of stationary phase"Journal of Functional Analysis. 172. 165-176 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Taniguchi: "Analytic functions on abstract Wiener spaces"Journal of Functional Analysis. (printing).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Hinoshi Kunita: "Canonical SDE's based on semimantingales with spatial parameters, Part I, Stochastic flows of diffeomorphisms"Kyushu Jounal of Mathematics. 53・2. 265-300 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiroshi Kunita: "Canonical SDE's based on semimartingales with spatial parameters, Part II, Inverse flows and backward SDE's"Kyushu Jounal of Mathematic. 53-2. 301-331 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiroshi Kunita: "Invariant measures for Levy flows of diffeomorphisms"Proceedings of the Royal Society of Edinburgh. 130A. 925-946 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Setsuo Taniguchi: "Levy's stochastic area and the principle of stationany phase"Journal of Functional Analysis. 172. 165-176 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Setsuo Taniguchi: "Analytic functions on abstract Wienen spaces"Joannal of Functional Analysis. (印刷中).

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiroshi,Kunita: "Analyticity and injectivety of conoolution semigroups η Lie groups"Journal of Functional Analysis. 165. 80-100 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hiroshi Kunita: "Canonical SDE's based on semimartingales with spatial parameters I"Kyushu Journal of Mathematics. 53. 265-300 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Setuo Taniguchi: "Stochastic oscilatory integrals with quadratic phase function and Jacobi equation"Probability theory and related fields. 114・3. 291-308 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Sugita and S,Taniguchi: "A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure"Kyushu Journal of Mathematics. 53・2. 151-162 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kumi Yasuda: "On infinitely, divisible distributions on locally compact abelian group"Journal of theoretical probability. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] Yasunari Fukai: "Hitting distribution to a quadrant of two-dimentional random walts"Kodai Mathematical Journal. (発表予定).

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi