• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Establishment of operator inequalities by using computers and their applications

Research Project

Project/Area Number 11640186
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionScience University of Tokyo

Principal Investigator

FURUTA Takayuki  Science University of Tokyo Faculty of Science Professor, 理学部, 教授 (40007612)

Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 1999: ¥2,200,000 (Direct Cost: ¥2,200,000)
KeywordsLowner-Heinz inequality / Furuta inequality / generalized Furuta inequality / log majorization / order preserving inequality / chaotic order / relative operator entropy / positive definite operator / Lowner-Heinz不等式 / relative entropy / log-hyponormal / p-hyponormal / Kantorovich inequality
Research Abstract

In what follows, a capital letter means a bounded linear operator on a Hilbert space. Furuta inequality (1987) asserts that if A 【greater than or equal】 B 【greater than or equal】 0, then for r 【greater than or equal】 0,
(*) (A^<r/2> A^p A^<r/2>)^<1/q> 【greater than or equal】 (A^<r/2> B^p A^<r/2>)^<1/q>
holds for p 【greater than or equal】 0 and q 【greater than or equal】 1 with (1 + r)q 【greater than or equal】 p + r. Furuta inequality yields the famous Lowner-Heinz one (1934), that is, A 【greater than or equal】 B 【greater than or equal】 0 ensures A^p 【greater than or equal】 B^p for 1 【greater than or equal】 p 【greater than or equal】 0 when we put r = 0 in (*). We obtained a lot of applications of Furuta inequality in the following three branches, (a) operator ibnequalities, (b) norm inequalities and (c) operator equations. We cite some of them as follows : (a_1) relative operator entropy, (a_2) Ando-Hiai log majorization, (a_3) Aluthge transformation, (b_1) Heinz-Kato inequality, (b_2) Kosaki trace inequality, (c_1) Pedersen-Takesaki operator equation. Recently we obtained a one page simplified proof of generalized Furuta inequality which interpolates Furuta inequality itself and an inequality equivalent to the main theorem on log majorizaton by Ando-Hiai. Further applications of Furuta inequality to some operator equatios and relative operator entoropy will be expected in near future.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (50 results)

All Other

All Publications (50 results)

  • [Publications] T.Furuta: "Generalizied Juruta inequality Banach-algebra"Mathematical lnequalities and Applications. 2. 289-295 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] J.I.Fujii: "Simplified proof of characterization of chaotic order via Specht's ratio"Sciential Mathematical. 2. 63-64 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "On rowers of p-hyponormal and log-hynonomal operators"J.Inequalties and Applications. 5. 367-380 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "On rowers of p-hynonormal operators"Sciential Mathematical. 2. 279-284 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "An application of generalized furuta ineqality to Kamtoronical…"Sciential Matheamatical. 2. 393-399 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Applications of Gramian transformation formula"Sciential Mathematical. 3. 81-86 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Simple proof of the concavity on operafor entropy f(A)=-Alog A"Mathematical Inequaties and Applications. 3. 305-306 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Results under logAzlogB can be derived from ones under…"Mathematical Inequalities and Applications. 3. 423-436 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "A logarithmicon Jurnta inequality"Sciential Mathematical. 3. 229-231 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Juruta: "The Holder-McCanthy and young inequalities on equivalent"American Mathamathcal Monthly. 106. 68-69 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Spectial order A>B il and only of A^<2p-r>Z(A-r/2B^PA-r/2)(2p-r)/(p-r)for…"Mathematical Inequalities and Applications. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Logarithmic order and dual logarilhmic order"Acta &ci Math(Sgeged). (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "A【greater than or equal】B【greater than or equal】0ensures (Ar/2A^pAr/2)^<r/q>(Ar/2B^PAr/2)^<r/q>for"Math Japonicae. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Generalized Furuta inequality in Banach ^*-albegra"Mathematical Inequalities and Applications. 2. 289-295 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] J.I.Fujii: "Simplified proof of characteriation of chaotic order via Specht's ratio"Scientiae Mathematicae. 2. 63-64 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "On powers of p-hyponormal and log-hyponormal operators"J.Inequalities and Applications. 5. 367-380 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "On powers of p-hyponormal operators"Scientiae Mathematicae. 2. 279-284 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "An application of generalized Furut inequality to Kantorovich type inequalities"Scientiae Mathematicae. 2. 393-399 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Applications of Gramian transformation formula"Scientiae Mathematicae. 3. 81-86 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Simple proof of the concavity on operator entropy f(A) = -A log A"Mathematical Inequalities and Applications. 3. 305-306 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Results under log A 【greater than or equal】 log B can be derived from ones under A 【greater than or equal】 B 【greater than or equal】 0 by Uchiyama's meyhod"Mathematical Inequalities and Applications. 3. 423-436 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "A folk theorem on Furuta inequality"Scientiae Mathematicae. 3. 229-231 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "The Holder-McCarthy and Young inequalities are equivalent for Hilbert space operators"American Mathematical Monthly. 106. 68-69 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Spectral order A > B if and only if A^<2p-r> 【greater than or equal】 (A^<(-r)/2> B^p A^<(-r)/2>)^<(2p-r)/(p-r)> for all p > r 【greater than or equal】 0 and its application"Mathematical Inequalities and Applications. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Logarithmic order and dual logarithmic order"Acta Sci.Math (Szeged).. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "A 【greater than or equal】 B 【greater than or equal】 0 ensures (A^<r/2> A^p A^<r/2>)^<1/q> 【greater than or equal】 (A^<r/2> B^p A^<r/2>)^<1/q> for p 【greater than or equal】 0, q 【greater than or equal】 1, r 【greater than or equal】 0 with (1 + r)q 【greater than or equal】 p + r and its applications"Math. Japonicae.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Furuta: "Generalized Furuta inequality in Banach *-algebra"Mathematical Inequalities and Applications. 2. 289-295 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.I.Fujii: "Simplified proof of characterization of chaotic order via Speditisno"Sciential Mathematical. 2. 63-64 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "On powers of p-hyponormal and log-hyponormal operators"J.Inequalities and Applications. 5. 367-380 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "On powers of p-hyponormal operators"Sciential Mathematical. 2. 279-284 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "An application of generalized Furuta inequality to Kanteron"Sciential Mathematical. 2. 393-399 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "Applications of Gramian transformation formula"Sciential Methematical. 3. 81-86 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "Simple proof of the concavity on operator entropy f(A)=-A lgA"Mathematical Inequalities and Applications. 3. 305-306 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "Results under logA【greater than or equal】logB can be derived from one…"Mathematical Inequalities and Applications. 3. 423-436 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "A folk theorem on Furuta inequality"Sciential Mathematical. 3. 229-231 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "The Holda McCarthy and Young inequalities on equivalent"American Mathematical Monthly. 106. 68-69 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "Spectral order A>B if and only if A^<2p-r>Z(A^<(-r)/2>B^pA^<(-r)/2>)(2p-r)/(p-r)…"Mathematical Inequalities and Applications. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "Logarithmic order and dual logarithmic order"Acta Sci Math(Szeged). (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Furuta: "A【greater than or equal】B【greater than or equal】O ensures (A^<r/2>A^pA^<r/2>)^<1/q>【greater than or equal】(A^<r/2>B^pA^<r/2>)^<1/q> for……"Math.Japonical. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] Takayuki Furuta: "Simple proof of the concairty on operator entropy f(A)=-A log A"Mathematical Inequalities&Applications. 2(in press). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Fujiii,T.Furuta&R.Nakamoto: "Applications of Gramian transformation formula"Scientiae Mathematical. (in press). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Furuta&Y.Seg: "An application of generalized Furuta inequality to Kantorovich・・・・"Scientiae Mathematical. 2. 393-399 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Furuta&M.Yanagida: "On powers of p-hyponormal operators"Scientiae Mathematical. 2. 279-284 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Furuta&M.Yanagida: "On powers of p-hyponormal and log-haiponormal operators"J.Inequalities&Applications. (in press). (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.I.Fujii,T.Furuta,T.Yamazaki&M.Yanagida: "Simplified proof of characterization of chaotic order・・・・"Scientiae Mathematical. 2. 63-64 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Takayuki Furuta: "Generalized Furuta inequality in Banach*-algebra"Mathematical Inequalities&Applications. 2. 289-295 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Furuta,M.Ito&T.Yamazaki: "A subclass of paranormal operators including・・・・"Scientiae Mathematical. 3. 389-403 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Furuta,T.Yamazaki&M.Yanagida: "Order preserving operator function via Furuta inequality"Proceedings of 96-IWOTA. 1. 175-184 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Furuta&M.Yanagida: "Generalized means and convexity of inversion for positive operators"American Mathematical Monthly. 105. 258-259 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] (]SY.gtoreq. 〔o ensures (a┣dl┣d7r(/)2┫d7┫dla┣dlp┫dla┣dl┣d7r(/)2┫d7┫dl)┣dl┣d7l(/)q┫d7┫dl(〕sy.gtoreq.(A^<1/2>B^pA^<r/2>)^<1/q> for・・・・"Kluwer Academic Publishers. 20 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi