• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The properties of P-harmonic maps and the application to Geometry

Research Project

Project/Area Number 11640221
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionShikoku University

Principal Investigator

TAKEUCHI Hiroshi  Shikoku University, Faculty of Management and Information Science, Professor, 経営情報学部, 教授 (20197271)

Co-Investigator(Kenkyū-buntansha) HARIMA Tadahito  Shikoku University, Faculty of Management and Information Science, Associate Professor, 経営情報学部, 助教授 (30258313)
KATSUDA Atsushi  Okayama University, Faculty of Science, Associate Professor, 理学部, 助教授 (60183779)
SAKAI Takashi  Okayama University, Faculty of Science, Professor, 理学部, 教授 (70005809)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 1999: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsP-harmonic map / P-Laplace operator / graph / spectrum / 無限グラフ / グリーン核 / リーマン多様体 / P-harmonic morphism / P-ラプラシアン / 第1固有値 / スペクトラム
Research Abstract

Let u : M → N be a smooth map between Riemannian manifolds and p a real number 1 < p < ∞. We call u a p-harmonic map if it is a critical point of the p-energy functional ∫_M | du |^pdx. In the case of p = 2, it becomes the usual harmonic map. When N is a real number, the map u becomes the p-harmonic function and it is the solution of Δ_pu =div(|∇u|^<p-2>∇u) = 0. When M is the n-dimensional sphere S^n and p is equal to the dimension of M (dim M = n = p), we can get the existence of n-harmonic maps from S^n to N. This is the generalization of the results of Sacks-Uhlenbeck, which is the case of n = p = 2.
Let N be a real number. For the p-Laplacian Δ_p, we define the first eigenvalue of the p-Laplacian as the least real number λ for which the equation Δ_pu = -λ|u|^<p-2>u has a nontrivial solution u. Before, we had several estimates for them on Riemannian manifolds, such as the Faber-Krahn type inequality, the Cheeger type inqulity, and the Cheng type inequality. We get a discrete analogue in this project term, that is, we define the p-Laplacian on graphs and get the Cheeger type inequality and the Brooks type inequality. Let G_1 = (V_1, E_1) and G_2 = (V_2, E_2) be two graphs and φ : V_1 → V_2 an onto mapping. The map φ is said to be a p-harmonic morphism of G_1 to G_2 if for any p-harmonic function f at y = φ(x) ∈ V_2, the composition φ^* f = f ο φ is p-harmonic function at x ∈ V_1. We show the p-harmonic morphism is equivalent to the horizontally conformal.
Next we consider the solution of p-Laplace equations which coincide with Green kernels in the case of p = 2 and give some estimates.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] 河合茂生: "On the existence of n-harmonic spheres"Compositio Mathematica. 117. 33-43 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 竹内 博: "On the spectrum of the P-Laplacian for a graph"四国大学紀要自然科学編. 12. 1-9 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 竹内 博: "On the P-harmonic morphisms for a graph"四国大学紀要自然科学編. 14. 1-6 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shingo Kawai, Nobumitsu Nakauchi, Hiroshi Takeuchi: "On the existence of n-harmonic spheres"Compositio Mathematica. 117. 33-43 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Takeuchi: "On the spectrum of the p-Laplacian for a graph"Bulletin of Shikoku University. Ser.B-No12. 1-9 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Takeuchi: "On the p-harmonic morphisms for graphs"Bulletin of Shikoku University. Ser.B-No14. 1-6 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 竹内 博: "Y. Colin de Verdiereによるグラフの新しい不変量について"四国大学経営情報研究所年報. 7号. 109-115 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 竹内博: "On the p-harmonic morphsims for graphs"四国大学紀要自然科学編. 14. 1-6 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] SHIGEO KAWAI: "On the existence of n-harmonic spheres"Compositio Mathematica. 117. 33-43 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 竹内 博: "On the spectrum of the p-Laplacian for a graph"四国大学紀要自然科学編. 12. 1-9 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Tadahito Harima: "A note on Artinian Gorenstein algebras of codimension three"Journal of Pure and Applied Algebra. 135・1. 45-56 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi