Project/Area Number |
11670130
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General medical chemistry
|
Research Institution | KUMAMOTO UNIVERSITY |
Principal Investigator |
NOMIYAMA Hisayuki KUMAMOTO UNIVERSITY, SCHOOL OF MEDICINE, ASSOCIATE PROFESSOR, 医学部, 講師 (00156225)
|
Project Period (FY) |
1999 – 2000
|
Project Status |
Completed (Fiscal Year 2000)
|
Budget Amount *help |
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1999: ¥1,800,000 (Direct Cost: ¥1,800,000)
|
Keywords | chemokine / gene cluster / gene family / gene evolution / gene rearrangement / PARC / LEC / eotaxin-3 / ILC / MPIF-1 / HCC-2 / 染色体17番 |
Research Abstract |
Chemokines are a family of small cytokines that play essential roles in the directed migration of various types of leukocytes. Based on the arrangement of the conserved cysteine residues, they are classified into two major subfamilies, CXC and CC, and two minor subfamilies, C and CX_3C.So far, more than 40 members of this family have been identified in humans. Strikingly, the majority of CXC chemokine genes and that of CC chemokine genes are closely clustered at chromosomes 4q 12-21 and 17q11.2, respectively. Similarly, the mouse major CXC and CC chemokine gene clusters are located on chromosomes 5 and 11, respectively. In order to understand the evolutionary processes that generated large numbers of CXC and CC chemokine genes in the respective chromosomal sites, we have constructed BAC and YAC contigs covering the human and mouse major clusters of CXC and CC chemokine genes. The results reveal that the organizations of CXC and CC chemokine genes in the major clusters are quite diverged between the two species most probably due to very recent gene duplications and rearrangements. Our results provide an important insight into the evolutionary processes that generated the major chemokine gene clusters and also valuable information in assigning the orthologues between human and mouse major cluster chemokines.
|