The higher-order brain dysfunction in TRH knockout mice
Project/Area Number |
11671080
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Endocrinology
|
Research Institution | Gunma University |
Principal Investigator |
YAMADA Masanobu Gunma University School of Medicine, Assistant Professor, 医学部, 助手 (90261833)
|
Project Period (FY) |
1999 – 2001
|
Project Status |
Completed (Fiscal Year 2001)
|
Budget Amount *help |
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2001: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1999: ¥1,900,000 (Direct Cost: ¥1,900,000)
|
Keywords | TRH / knockout mouse / neurophysiological action / ノックアウトマウス |
Research Abstract |
TRH has been reported to possess several neurophysiological actions in the brain. To gain insights into the molecular mechanisms underlying these effects, particularly in the cerebellum, we attempted to clone a cDNA that was regulated by TRH using TRH knockout mice and subtractive cDNA analysis. Over 100 clones obtained by subtractive hybridization analysis between the wild-type and TRH^<-/-> cerebellum were analyzed. Four clones among them were identical and cdc2-related kinase (PFTAIRE protein kinase 1 (PFTK1)) cDNA, which was previously reported to be expressed only in the brain and testis. PFTK1 mRNA levels in the euthyroid TRH^<-/-> cerebellum supplemented with thyroid hormone were significantly decreased compared with those in the wild-type. Induction of PFTK1 mRNA by TRH was also observed in a time- and dose-dependent manner in human medulloblastoma-derived HTB-185 cells that expressed TRH receptor subtype 1 mRNA. In addition, treatment of 8-Br-cGMP significantly increased PFTK1 mRNA levels, and a specific inhibitor of cGMP production, ODQ, completely blocked TRH-induced expression of PFTK1 mRNA. Furthermore, induction of PFTK1 mRNA by TRH was significantly inhibited by a NOS specific inhibitor, L-NAME, but not by a MEK inhibitor, PD98059 or a calcium channel inhibitor, nimodipine. These findings demonstrated, for the first time, a novel pathway between a neuropeptide and a cell cycle related peptide in the brain, and PFTK1 may be a key regulator for TRH action in the cerebellum through the NO-cGMP pathway.
|
Report
(4 results)
Research Products
(6 results)