• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Successive Convex Relaxation Methods for Nonconvex Optimization Problems

Research Project

Project/Area Number 11680441
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 社会システム工学
Research InstitutionTokyo Institute of Technology

Principal Investigator

KOJIMA Masakazu  Tokyo Institute of Technology, Graduate School of Information Science and Engineering, Professor, 大学院・情報理工学研究科, 教授 (90092551)

Co-Investigator(Kenkyū-buntansha) FUJISAWA Katsuki  Graduate School of Engineering, Kyoto University, Research Associate, 大学院・工学研究科, 助手 (40303854)
DAI Yang  Tokyo Institute of Technology, Graduate School of Information Science and Engineering, Assistant Professor, 大学院・情報理工学研究科, 講師 (40244678)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2000: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 1999: ¥1,900,000 (Direct Cost: ¥1,900,000)
KeywordsQuadratic Optimization Problem / Linear Program / Semidefinite Program / Combinatorial Optimization / Relaxation / Complexity / 主双対内点法
Research Abstract

In this research project, we studied a general Quadratic Optimization Problem(QOP)having a linear objective function c^Tx to be maximized over a compact subset F of the n-dimensional Euclidean space R^n represented by(finitely or infinitely many)quadratic inequalities. There are two viriants of successive convex relaxation method, the SSDP(Successive Semidefinite Programming)Relaxation Method and the SSILP(Successive Semi-Infinite Linear Programming)Relaxation Method. Each of the methods generates a sequence of compact convex subsets C_k(k=1,2, ...)of R^n which monotonically converges to the convex hull of F.To implements the SSDP and SSILP Relaxation Methods, we introduced two new techniques, "discretization " and "localization." The discretization technique makes it possible to approximate an infinite number of semi-infinite SDPs(or semi-infinite LPs)which appeared at each iteration of the original methods by a finite number of standard SDPs(or standard LPs)with a finite number of linear inequality constraints. The localization technique is for the cases where we are only interested in upper bounds on the optimal objective value(for a fixed objective function vector c)but not in a global approximation of the convex hull of F.This technique allows us to generate a convex relaxation of F that is accurate only in certain directions in a neighborhood of the objective direction c. This cuts off redundant work to make the convex relaxation accurate in unnecessary directions. Through numerical experiments, we confirmed that these two techniques worked effectively for large scale QOPs.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (29 results)

All Other

All Publications (29 results)

  • [Publications] 小島政和: "Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets"SIAM Journal on Optimization. 10巻・3号. 750-778 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 小島政和: "Discretization and Localization in Successive Convex Relaxation for Nonconvex Quadratic Optimization Problems"Mathematical Programming. 89巻・1号. 79-111 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 小島政和: "Complexity Analysis of Conceptual Successive Convex Relaxation Methods for Nonconvex Sets"Mathematics of Operations Research. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 福田光浩: "Exploiting Sparsity in Semidefinite Programming via Matrix Completion I : General Framework"SIAM Journal on Optimization. 11巻・3号(掲載予定). 647-674 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 藤澤克樹: "SDPA(半正定値計画問題に対するソフトウェア)"オペレーションズ・リサーチ. 45巻・3号. 125-131 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 戴陽: "Generalized of LMT-heuristics for several newclasses of optical triangulations"Computational Geometry : Theory and Applications. 17巻・1号. 31-68 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] D.Z.Chen, O.Daescu, Y.Dai, N.Katoh, J.Xu, and X.Wu: "Efficient algorithms and implementations for optimizing the sum of linear fractional functions, with applications"Proceedings of the 11th Annual SIAM-ACM Symposium on Discrete Algorithms(SODA), San Francisco. 707-716 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Dai, N.Katoh, and S.-W.Cheng: "Generalized of LMT-heuristics for several new classes of optimal triangulations"Computational Geometry : Theory Applications. Vol.17, No.1. 31-68 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Fujisawa, Y.Hamuro, N.Katoh, T.Tokuyama and K.Yada: "Approximation of Optimal Two-Dimensional Association Rules for Categorical Attributes Using Semidefinite Programming"The Proceedings of the Second International Conference on Discovery Science, Waseda University International Conference Center, tokyo, Japan, Springer. 148-159 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Fujisawa, M.Kojima, M.Fukuda, and K.Nakata: "Numerical Evaluation of SDPA(SemiDefinite Programming Algorithm)"High Performance Optimization, H.Frenk, K.Roos, T.Terlaky and S.Zhang eds., Kluwer Academic Press. 267-301 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Kojima, M.Shida and S.Shindoh: "A Note on Nesterov-Todd and kojima-Shindoh-Hara Search Directions in Semidefinite Programming"Optimization Methods and Software. Vol.11 & 12. 47-52 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Kojima, M.Shida and S.Shidoh: "A Predictor-Corrector Interior-Point Algorithm for the Semidefinite Linear Complementarity Problem Using the Alizadeh-Haeberly-Overton Search Direction"SIAM Journal on Optimization. Vol.9, No.2. 444-465 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Kojim, M.Shida, and S.Shindoh: "Search Directions in the SDP and the Monotone SDLCP : Generalization and Inexact Computation"Mathematical Programming. Vol.85, No.1. 51-80 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Kojima and L.Tuncel: "Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets"SIAM Journal on Optimization. Vol.10, No.3. 750-778 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Kojima and L.Tuncel: "Discretization and Localization in Successive Convex Relaxation for Nonconvex Quadratic Optimization Problems"Matehmatical Programming. Vol.89, No.1. 79-111 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Ohsaki, K.Fujisaa, N.Katoh and Y.Kanno: "Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets"SIAM Journal on Optimization. Vol.10, No.3. 750-778 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Ohsaki, K.Fujisawa, N.Katoh and Y.kanno: "Semi-Definite Programming for Topology Optimization of Truss under Multiple Eigenvalue Constraints"The Computer Methods in Applied Mechanics and Engineering. Vol.180. 203-217 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] A.Takada, Y.Dai, and M.Fukuda, and M.Kojima: "Towards Implemenations of Successive Convex Relaxation Methods for Nonconvex Quadratic Optimization Problems"Approximation and Complexity in Numerical Optimization : Continuous and Discrete Problems(P.M.Pardalos, Editor), Kluwer Academic Press. 489-510 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] A.Takeda and M.Kojima: "Successive Convex Relaxation Apporach to Bilevel Quadratic Optimization Problems"Applications and Algorithms of Complementarity(M.C.Ferris, O.L.Mangasarian and J.-S.Pang, Editors), Kluwer Academic Publishers.. (To applear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 小島政和: "Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets"SIAM Journal on Optimization. 10巻・3号. 750-778 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小島政和: "Discretization and Localization in Successive Convex Relaxation for Nonconvex Quadratic Optimization Problems"Mathematical Programming. 89巻・1号. 79-111 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小島政和: "Complexity Analysis of Conceptual Successive Convex Relaxation Methods for Nonconvex Sets"Mathematics of Operations Research. (掲載予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 福田光浩: "Exploiting Sparsity in Semidefinite Programming via Matrix Completion I : General Framework"SIAM Journal on Optimization. 11巻・3号(掲載予定). 647-674 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 藤澤克樹: "SDPA(半正定値計画問題に対するソフトウェア)"オペレーションズ・リサーチ. 45巻・3号. 125-131 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 戴陽: "Generalized of LMT-heuristics for several newclasses of optimal triangulations"Computational Geometry : Theory and Applications. 17巻・1号. 31-68 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小島政和: "A Note on Nesterov-Todd and Kojima-Shindoh-Hara Search Directions in Semidefinite Programming"Optimization Methods and Software. 11巻1号. 47-52 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 小島政和: "A Predictor-Corrector Interio-Point Algorithm for the Semide finite Linear Complementarity Problem Using the Alizadeh-Haeberly-OvertonSearch Direction"SIAM Journal on Optimization. 9巻・2号. 444-465 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 小島政和: "Search Directions in the SDP and the Monotone SDLCP: Generalization and Inexact Computation"Mathematical Programming. 85巻・1号. 51-80 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 小島政和: "Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets"SIAM Journal on Optimization. 掲載予定.

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi