• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integrated Machine Learning Workbench for Data Mining

Research Project

Project/Area Number 11694159
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionOsaka University

Principal Investigator

MOTODA Hiroshi  Institute of Scientific and Industrial Research, Osaka University Professor, 産業科学研究所, 教授 (00283804)

Co-Investigator(Kenkyū-buntansha) YOSHIDA Tetsuya  Institute of Scientific and Industrial Research, Osaka University Research Associate, 産業科学研究所, 助手 (80294164)
WASHIO Takashi  Institute of Scientific and Industrial Research, Osaka University Associate Professor, 産業科学研究所, 助教授 (00192815)
堀内 匡  大阪大学, 産業科学研究所, 助手 (50294129)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥8,700,000 (Direct Cost: ¥8,700,000)
Fiscal Year 2001: ¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 2000: ¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 1999: ¥3,000,000 (Direct Cost: ¥3,000,000)
KeywordsMachine Learning / Feature Selection / Feature Construction / Case Selection / Numerical Discretization / Knowledge Acquisition / Data Mining / International Collaboration / MDL / AIC
Research Abstract

A new generation of computational techniques and tools is required to support the extraction of useful knowledge from the rapidly growing volumes of data. In this research project we aimed to develop effective methods for feature selection, instance selection and feature construction and integrate them to form a basis of workbench for machine learning and data mining. For feature selection, various performance measures such as distance measure, uncertainty measure, dependency measure, consistency measure and error rate, and various search methods such as heuristic search, complete search and random search were investigated and a design strategy was proposed as to which method to use for which kind of dataset. Further, a new method ABB was proposed that uses consistency measure and performs a very efficient complete search. For instance selection, a new method S^3 Bagging which combines random subsampling and committee learning method was proposed and it was expected that this reduces the amount of data by 90%. For feature construction, two new methods were proposed. One is multi-strategy learning in which graph-base induction GBI that is based on repeated chunking of paired nodes was used as a feature constructor for use in decision tree classifier. Another is to construct new features from association rules. Both were tested against various datasets and conformed effective. All of these are components of the workbench, and we expect that this contributes to mining better knowledge more efficiently.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (48 results)

All Other

All Publications (48 results)

  • [Publications] 寺邊 正大: "S^3Baggingによる高速な分類 器生成"数理モデル化と応用. 42. 25-38 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Motoda: "Mining Patterns from Graph Structured Data"Proc. of the Fifth International Workshop on Multistrategy Leearning. 137-150 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Manoranjan Dash: "Consistency Based Feature Selection"Proc. of the 4th Pacific Asia Conference on Knowledge Discvoery and Data Mining. 98-109 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Bahua Gu: "Efficiently Determining the Starting Sample Size for Progressive Sampling""Proc. of the 12^<th> European Conference on Machine Learning. 192-202 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Manoranjan Dash: "Efficient Hierarchical Clustering Algorithms using Partially Overlapping Partitions"Proc. of the 5th Pacific Asia Conference on Knowledge Discvoery and Data Mining. 495-506 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Takashi Matsuda: "Graph-Based Induction for General Graph Structured Data and Its Application to Chemical Compound Data"Proc. of the Third International Conference on Discovery Science. 99-111 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 鈴木 篤之: "システムの設計・運用・評価",岩波講座,現代工学の基礎(設計系V)"岩波書店. 165 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Terabe: "Attribute Generation based on Association Rules"J. of JSAI. Vol.15. 187-197 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Kayama: "Classification Rule Learning from Tree Structured Data by Stepwise Pair Expansion"J. of JSAI. Vol.15. 485-494 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] A. Inokuchi: "Fast and Complete Mining Method for Frequent Graph Patterns"J. of JSAI. Vol.15. 1052-1063 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Wada: "The synthesis of Ripple Down Rules Method with an Inductive Learning using MDL Principle"J. JSAI. Vol.16. 268-278 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Matsuda: "Graph-Based Induction for General Graphs and its Application"J. JSAI. Vol.16. 363-374 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Huan Liu: "Efficient Search of Reliable Exception"Proc. of the Third Pacific Asia Conference on Knowledge Discovery and Data Mining. 194-203 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Terabe: "A Fast Classification by S3Bagging"J. IPSJ TOM. Vol.42. 25-38 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Motoda: "Mining Patterns from Graph Structured Data"Proc. of the Fifth International Workshop on Multistrategy Leearning. 137-150 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Manoranjan Dash: "Consistency Based Feature Selection"Proc. of the 4th Pacific Asia Conference on Knowledge Discvoery and Data Mining. 98-109 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Bahua Gu: "Efficiently Determining the Starting Sample Size for Progressive Sampling"Proc. of the 12th European Conference on Machine Learning. 192-202 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Manoranjan Dash: "Efficient Hierarchical Clustering Algorithms using Partially Overlapping Partitions"Proc. of the 5tt Pacific Asia Conference on Knowledge Discvoery and Data Mining. 495-506 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Matsuda: "Graph-Based Induction for General Graph Structured Data and Its Application to Chemical Compound Data"Proc. of the Third International Conference on discovery Science. 99-111 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Huan Liu: "Instance selection and construction for Data Mining"Kluwer Academic Publishers. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 和田 卓也: "最小記述長を用いた帰納学習のRipple Down Rules法への統合化"人工知能学会論文誌. 16. 268-278 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 松田 喬: "一般グラフ構造データに対するGraph-Based Indutionとその応用"人工知能学会論文誌. 16. 363-374 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 寺邊 正大: "S^3Baggingによる高速な分類器生成"数理モデル化と応用. 42. 25-38 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Huan Liu: "Towards Multidatabase Mining : Identifying Relevant Databases"IEEE Transactions on Knowledge and Data Engineering. 13. 541-553 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Takuya Wada: "Knowledge Acquisition from Both Human Expert and Data"Proc.of the Fifth Pacific-Asia Conference on Knowledge Discovery and Data Mining. 550-561 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Manoranjan Dash: "Efficient Yet Accurate Clustering"Proc.of IEEE International Conference on Data Mining. 99-106 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Huan Liu: "Instance Selection and Construction for Data Mining"Kluwer Academic Publishers. 416 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Takashi Matsuda: "Graph-Based Induction for General Graph Structured Data and Its Application to Chemical Compound Data"Proc.of the Third International Conference of Discovery Science. 99-111 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiroshi Motoda: "Mining Patterns from Graph Structured Data"Proc.of the Fifth International Workshop on Multistrategy Learning. 137-150 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Manoranjan Dash: "Consistency Based Feature Selection"Proc.of the Fourth Pacific-Asia Conference of Knowledge Discovery and Data Mining. 98-109 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Manoranjan Dash: "Feature Selection for Clustering"Proc.of the Fourth Pacific-Asia Conference of Knowledge Discovery and Data Mining. 110-121 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Yanlei Diao: "A Comparative Study of Classification Based Personal E-mail Filtering"Proc.of the Fourth Pacific-Asia Conference of Knowledge Discovery and Data Mining. 408-419 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Takuya Wada: "Integrating Inductive Learning and Knowledge Acquisition in the Ripple Down Rules Method"Proc.of the sixth Pacific Rim Knowledge Acquisition Workshop. 325-340 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 鹿山俊洋: "逐次ベア拡張による木構造データからの分類規則学習"人工知能学会誌. 15,3. 485-494 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 和田卓也: "Ripple Down Rules法における知識獲得の特性評価に基づくデフォルト知識の決定規範"人工知能学会誌. 15,1. 177-186 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 和田卓也: "Ripple Down Rules法における知識獲得と帰納学習の統合的手法の試み"2000年度人工知能学会全国大会資料. 539-542 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 和田卓也: "Ripple Down Rules法における知識獲得と帰納学習の統合的手法の基礎検討"第41回人工知能基礎論研究会資料. 25-30 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 藤原啓成: "Ripple Down Rules法における近傍事例の積極的活用に関する検討"2000年度人工知能学会全国大会資料. 535-538 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 藤原啓成: "近傍事例を自動生成し活用するRipple Down Rules法におけるに関する検討"第41回人工知能基礎論研究会資料. 19-24 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Huan Liu: "Instnce Selection and Construction for Data Mining"Kiuwer Academic Publishers. 416 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 元田 浩: "明示的理解に魅せられて"人工知能学会誌. Vol.14. 615-625 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 元田 浩: "「明示的理解に魅せられて」へのコメントと回答"人工知能学会誌. Vol.14. 808-818 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Liu: "Efficient Search of Reliable Exceptions"Proc. of the Third Pacific Asia Conference on Knowledge Discovery and Data Mining. 194-203 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Liu: "Feature Selection Using Consistency Measure"Proc. of the Second International Conference on Discovery Science. 319-320 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Liu: "Handling Large Unsupervised Data via Dimensionality Reduction"Proc. of SIGMOD Data Mining and Knowledge Discovery Workshop. (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 鷲尾 隆: "知識発見研究の現状と展望-知識発見研究の方向性及びバスケット分析のための数値属性データの離散化-"第13回人工知能学会全国大会論文集. 153-156 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 鷲尾 隆: "膨大なグラフ構造データからの高速マイニング手法"第13回人工知能学会全国大会論文集. 397-400 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 堀内 匡: "Graph-Based Inductionの一般グラフへの拡張とその実験的評価"第13回人工知能学会全国大会論文集. 393-396 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi