• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

代数体の類数とその挙動およびBernoulli数に関する研究

Research Project

Project/Area Number 11740010
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

佐藤 潤也  名古屋大学, 大学院・人間情報学研究科, 助教授 (20235352)

Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥900,000 (Direct Cost: ¥900,000)
KeywordsBernoulli数 / q-Bernoulli数 / q-analogue / q-series
Research Abstract

研究実績の概要
代数体の類数とその挙動およびBernoulli数に関する研究に関して,研究期間内に以下のような研究成果を得た。
1.Bernoulli数の積を和で表わす公式をCarlitzのq-Bernoulli数に対して考察し2個の積の場合に証明した(Sums of Products of two q-Bernoulli numbers,Journal of Number Theory,1999(74))。
2.Kanekoが証明した新しいBernoulli数に関する漸化公式を一般化し,さらに形式群に付随するq-Bernoulli数に対しても同様の漸化公式が存在することを証明した(A recurrence formula for the q-Bernoulli numbers attached to formal group,Nagoya Mathematical Journal,2000(157))。
3.形式群に付随するq-analogueの概念を導入し,形式群に付随するBernoulli数に対してdistribution relationを証明した(日韓数論セミナー,1999(Tohoku univ.))。これを,応用すれば,形式群に付随するBernoulli数をp-進的に補間するp-進解析的関数を構成することができる。
4.q-operatorと微分との関係を解明した。これを,応用すれば上記1.の結果を一般の数のq-Berunulli数の積の場合に拡張することができる。さらに,形式群に付随するBernoulli数の積の場合にも拡張することができる。
5.形式群に関する考察を精密化し対象範囲を拡大した。q-operatorの作用を負巾項を含む巾級数へ拡張することにより,対応するL-関数の正の整数値における値の計算が可能になる。

Report

(2 results)
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (4 results)

All Other

All Publications (4 results)

  • [Publications] J.Satoh: "Sums of Products of Two q-Bernoulli Numbers"Journal of Number Theory. 74. 173-180 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Satoh: "A recurrence formula for the q-Bernoulli numbers attached to formal group"Nagoya Math.Journal. 157. 93-101 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Satoh: "Sums of Products of Two q-Bernoulli Numbers"Journal of Number Theory. 74. 173-180 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Satoh: "A recurrence formula for the q-Bernoulli numbers attached to formal group"Nagoya Math. Journal. 157. (2000)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi