• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

符号付きリーマン面のモジュライ空間の数論的分解の研究

Research Project

Project/Area Number 11740018
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionNagoya University (2000)
Kobe University (1999)

Principal Investigator

翁 林 (WENG LIN)  名古屋大学, 大学院・多元数理科学研究科, 助教授 (60304002)

Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2000: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1999: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywords平均値補題 / Riemann-Roch定理 / Weil-Petersson計量 / Takhtajan-Zograf計量 / Selbergゼータ関数 / Eisenstein級数 / Deligne対 / 退化 / Riemann-Rochの定理 / Deligne pairing / Admissible計量
Research Abstract

この研究プロジュクトにおいて、穴空きリーマン面のモジュライ空間の数論的側面を研究してきた。特に、Weil-Petersson計量やTakhtajan-Zograf計量を精密に研究するためにDeligne対の定式化を用いて解析を行った。それらの研究の中で、特に特異双対的計量に関して、対数的Mumford等長同型を示し、その結果を用いてWeil-Petersson計量とTakhtajan-Zograf計量が代数的である事を示した。これらの事から自然にWeil-Petersson計量やTakhtajan-Zograf計量の数論的分解のついての可能性が提示されたが、このことはSelbergゼータ関数の分解の可能性も示唆する。さらに、今の段階で、Weil-Petersson計量の数論的分解についてはMasurの技法を用いて良い結果を得る。問題はTakhtajan-Zograf計量の数論的分解である.そのためにEisenstein級数の退化を詳しく調べる必要がある.これは今後の課題になる。(代数的側面についてはかなりよくわかる.Weil-PetersonおよびTakhtajan-Zograf直線束は交点理論的に定義されていて境界に拡張する.)

Report

(2 results)
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] L Weng: "Ω-admissible theory II"Math.Ann. (印刷中).

    • Related Report
      2000 Annual Research Report
  • [Publications] W-K.To: "Admissible Hennitian Metrics on families of line bundles over degenerating Riemann Surface"Pacific J.Math. (印刷中).

    • Related Report
      2000 Annual Research Report
  • [Publications] L.Weng: "Ω-admissiblee theory"Proc.London.Math.Soc. 79. 481-510 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] W.-K.To: "Green's functions for quasi-hyperbolic metrics on degenerating Riemann Surfaces with a separating node"Ann Global Anal Geo. 17. 239-265 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] W.-K.To: "The asymptotic behavior of Greens function for quaoi-hyperbolic metrics on degenerating Riemann Surfaces"Manusrcinpta Math.. 93. 465-480 (1997)

    • Related Report
      2000 Annual Research Report
  • [Publications] W.-K.To: "Curvature of the L^2-metric on the direct image of a family of Hermitian-Einstein vector bundles"Amer.J.Math.. 120. 649-661 (1998)

    • Related Report
      2000 Annual Research Report
  • [Publications] L.Weng: "Hyperbolic Metrics, Selberg Zeta functions and Arakelov Theory for punctured Riemann Surfaces"大阪大学・数字教室. 183 (1998)

    • Related Report
      2000 Annual Research Report
  • [Publications] L.Weng: "Ω-admissible theory"Proc.London Math.Soc.,. 79. 481-510 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] W.-K.To: "Green's functions for quasi-hyperbolic metrics on degenerating Riemann surfaces with a separating node"Ann.Global Anal.Geom.. 17. 239-265 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] W.-K.To: "The asymptotic behavior of Green's functions for quasi-hyperbolic metrics on degenerating Riemann surfaces"Manuscripta Math.. 93. 465-480 (1997)

    • Related Report
      1999 Annual Research Report
  • [Publications] W.-K.To: "Curvature of the L^2-metric on the direct image of a family of Hermitian-Einstein"Amer.J.Math.. 120. 649-661 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] L.Weng: "Standard modules of level 1 for <sl>^^^∧_2 in terms of Virasoro algebra representations"Comm.Algebra. 26. 613-625 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] L.Weng: "Deligne pairings over moduli space of marked stable curves"Proceeding of 44 Algebraic Symposium of MSJ. 1999. 175 (167)

    • Related Report
      1999 Annual Research Report
  • [Publications] L.Weng: "Hyperbolic Metrics,Selberg zeta functions and Arakelov theory for punctured Riemann surfaces"Math.Dept.of Osaka University. 183 (1998)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi