• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on vibrations and diffusions on fractals

Research Project

Project/Area Number 11837008
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

KIGAMI Jun  Professor, Graduate School of Informatics, Kyoto University, 情報学研究科, 教授 (90202035)

Co-Investigator(Kenkyū-buntansha) KUMAGAI Takashi  Associate professor, Graduate School of Informatics, Kyoto University, 情報学研究科, 助教授 (90234509)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 1999: ¥2,200,000 (Direct Cost: ¥2,200,000)
Keywordsfractals / self-similar sets / Laplacian / diffusion / Dirichlet form / heat kernel / asymptotic behavior / 熱方程式 / 自己相似
Research Abstract

In this research project, we obtained the following five main results related with analysis on fractals.
(1) Markov property of Dirichlet forms on self-similar sets
We showed the Markov property of Kusuoka-Zhou's Dirichlet forms on self-similar sets.
(2) Self-similarity of volume measures associated with Laplacians on p.c.f. self-similar fractals
We obtained a sufficient condition for the self-similarity of the volume measure, which is defined by using operator theoretic trace. We also showed that the sufficient condition holds in the case of standard Laplacian on the Sierpinski gasket.
(3) Green's function on fractals
We obtained an algorithm to calculate the diagonal of Green's function and used the algorithm to investigate the maximum value of Green's function.
(4) Large deviations for Brownian motion on the Sierpinski gasket
We showed that Varadhan type estimate and Schilder type Large deviation do not hold for the case of the standard Laplacian on the Sierpinski gasket
(5) Multifractal formalisms for the local spectral and walk dimensions
We showed the multifractal nature of the local spectral and walk dimensions associated with the Laplacians on the self-similar sets.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] Jun Kigami: "Markov property of Kusuoka-Zhou's Dirichlet forms on self-similar sets"J.Math.Sci.Univ.Tokyo. 7. 27-33 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] J.Kigami & M.Lapidus: "Self-similarity of volume measures of Laplacians on p.c.f.self-similar fractals"Comm.Math.Phys.. 217. 165-180 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] J.kigami,D.Sheldon & R.Strichartz: "Green's function of fractals"Fractals. 8. 385-402 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kumagai: "Transition density estimates for diffusion processes on post critically finite self-similar fractals."Proc.London Math.Soc.. 78. 431-458 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kumagai: "Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets."J.Math.Soc.Japan. 52. 373-408 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kumagai: "Lows of the iterated logarithm for some symmetric diffusion processes."Osaka J.Math.. 37. 625-650 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Jun Kigami: "Markov property of Kusuoka-Zhou's Dirichlet forms on self-similar sets"J.Math.Sci.Univ.Tokyo. 7. 27-33 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] J.Kigami & M.Lapidus: "Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals"Comm.Math.Phys.. 217. 165-180 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] J.Kigami, D.Sheldon & R.Strichartz: "Green's function on fractals"Fractals. 8. 385-402 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kumagai: "Transition density estimates for diffusion processes on post critically finite self-similar fractals."Proc.London Math.Soc.. 78. 431-458 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kumagai: "Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets."J.Math.Soc.Japan. 52. 373-408 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Kumagai: "Lows of the iterated logarithm for some symmetric diffusion processes."Osaka J.Math.. 37. 625-650 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Jun Kigami: "Markov property of Kusuoka-Zhou's Dirichlet forms on self-similar sets"J.Math.Sci.Univ.Tokyo. 7. 27-33 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Kigami & M.Lapidus: "Self-similarity of volume measures for Laplacians on p.c.f.self-similar fractals"Comm.Math.Phys.. 217. 165-180 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Kigami,D.Sheldon & R.Strichartz: "Green's function on fractals"Fractals. 8. 385-402 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kumagai: "Transition density estimates for diffusion processes on post critically finite self-similar fractals."Proc.London Math.Soc.. 78. 431-458 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kumagai: "Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets."J.Math.Soc.Japan. 52. 373-408 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kumagai: "Lows of the iterated logarithm for some symmetric diffusion processes."Osaka J.Math.. 37. 625-650 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 木上 淳: "Markov Property of Kusuoka-Zhou's Dirichlet form on Self-similar Sets"Journal of Mathematical Scince,University of Tokyo. (発売予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] 熊谷 隆: "Brownian Motion Peuetracting Fractals"Journal of Functional Analysis. 170. 69-92 (2000)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi