Research Abstract |
KdV方程式等の可積分系の散逸摂動系においてはソリトンなどの局在した構造よりも周期構造(特に周期的な進行波)が重要な意味を持つ場合がある。そこで周期解の安定性と分岐,2次分岐とそのダイナミクスなどの研究を行った.これらは液膜流などの流体の問題が起源だが,非線形非平衡系におけるパターン形成の一種の典型的なものとも考えられる. 1.液膜流における周期進行波の波数選択問題を,周期解の周りの固有値問題を解くことによって調べた.静止状態からある有限波数域の周期解が分岐するときすべて線形不安定であることがわかった. 2.異なる波数の周期解が同時に分岐するので,それらの相互作用が起こりうる.異なるモードの相互作用をダイナミカルに見るために,適当な周期的境界条件を課し,2つの波数の周期解のみ分岐しうる状況を設定した.(これは特殊な状況ではなく,無限区間ではこれらが集積していると考えられる.)そこでは単一の周期解自身は安定ではなく,2つが重ねさった変調波が安定に得られることを,中心多様体上の力学系を考察することにより明らかにした.これは,分岐して得られた周期解の枝からの2次分岐である.中心多様体理論の一般的な適用ではなく,退化した分岐点のまわりで,ベクトル場の標準系を厳密に求めることにより,完全にダイナミクスを分類できた.(この最後の部分は現在,P.Bates,X-F.Chenとの共同研究として準備中である.)
|