• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Algebraic vaieties with Kodaira dimansion O and A generalization of the Bogomolor-decomposition

Research Project

Project/Area Number 12440007
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

NAMIKAWA Yoshinori  Osaka Univ. Dept. Math. Associate Prof., 大学院・理学研究科, 助教授 (80228080)

Co-Investigator(Kenkyū-buntansha) GOTO Ryoshi  Osaka Univ. Dept. Math. Associate Prof., 大学院・理学研究科, 助教授 (30252571)
MIYANISHI Masayoshi  Osaka Univ. Dept. Math. Prof., 大学院・理学研究科, 教授 (80025311)
FUJIKI Akira  Osaka Univ. Dept. Math. Prof., 大学院・理学研究科, 教授 (80027383)
SATAKE Ikuo  Osaka Univ. Dept. Math. Assistant, 大学院・理学研究科, 助手 (80243161)
OHNO Koji  Osaka Univ. Dept. Math. Assistant, 大学院・理学研究科, 助手 (20252570)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥5,400,000 (Direct Cost: ¥5,400,000)
Fiscal Year 2002: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2001: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2000: ¥2,400,000 (Direct Cost: ¥2,400,000)
KeywordsComplex symplectic variety / derived category / deformation theory / singularity / Period / Torelli problem / higher dimmsional algebraic varieries / カラビ・ヤウ多様体 / トレリ問題 / モジュライ空間 / カラビーヤウ多様体 / 双有理幾何 / 基本群 / 倉西空間
Research Abstract

Does the period of the second cohomology determine an isomorphism class of a complex irreducible symplectic manifold? This is the Torelli problem. It is true for a K3 surface, but there is an counter-example of Debarre for dim 【greater than or equal】 4. Mukai, Huybrechts and others have posed the birational Torelli problem modifying the original one. We construeted a counter-example even for this problem.
On the other hand, for a complex irreducible symplectic manifold, which kind of information on the original variety can be recoverd from the derived category of coherent sheaves ? When do we have an equivalence of derived categories of two complex irreducible manifolds ? Such questions are quite interesting. We proved that the derived categories are equivalent if two smooth projective varieties are connected by a Mukai flop. As an application, one knows that birationally equivalent, complex, projective symplectic 4-folds have equivalent derived categories.
We also studied the deformation theory of complex symplectic varieties and generalized several important facts on a complex symplectic manifold to a singular symplectic variety.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (33 results)

All Other

All Publications (33 results)

  • [Publications] 並河良典: "Mukai flops and derived categories"J.Reine Angew.Math.. (印刷中). (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 並河良典: "Counter-example to global Torelli problem for irreducible symplectic manifolds"Math.Ann.. 324. 841-845 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 並河良典: "Stratified local moduli of Calabi-Yau threefolds"Topology. 41. 1219-1237 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 並河良典: "Projectivity criterion of Moishezon spaces and ・・・・"International J.Math.. 13. 125-135 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 並河良典: "Extension of 2-forms and symplectic varieties"J.Reine Angew.Math.. 539. 123-147 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 並河良典: "Deformation theory of singular symplectic n-folds"Math.Ann.. 319. 597-623 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Global smoothing of Calabi-Yau threefolds II"Compositio Math.. 125. 55-68 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Deformation theory of singular symplectic n-folds"Math. Ann. 319. 597-623 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Extension of 2-forms and symplectic varieties"J. Reine Angew. Math.. 539. 123-147 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Calabi-Yau threefolds and deformation theory"Sugaku Exposition, AMS.. 15. 1-29 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Stratified local moduli of Calabi-Yau threefolds"Topology. 41. 1219-1237 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Projectivity criterion of Moishezon Spaces and density of projective symplectic varieties"Intern. J. Math.. 13. 125-135 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Counter-example to global Torelli problem for irreducible symplectic manifolds"Math. Ann. 324. 841-845 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] "Mukai flops and derived categories"J. Reine Angew. Math.. to appear. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 並河良典: "Counter-example to global Torelli problem for irreducible symp"Math.Ann.. 324. 841-845 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 並河良典: "Stratified local moduli of Calabi-Yau threefolds"Topology. 41. 1219-1237 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 並河良典: "Projectivity criterion of Moishezon spaces and density of projective symplectic varieties"Inern.J.Math.. 13. 125-135 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 並河良典: "Calabi-Yau threefolds and deformation theory"Sugaku Exposition, A.M.S.. 15. 1-29 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 宮西正宜(共著): "Open algebraic surfaces with finite group actions"Transform.Groups. 7. 185-207 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 藤木明: "Topology of compact self-dual manifolds whose twbfor space is of positive algebraic dimension"J.Math.Soc.Japan. 54. 587-608 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 並河良典: "Deformation thcory of singular symplectic n-folds"Math.Ann.. 319. 597-623 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 並河良典: "Global smoothing of Calabi-Yau Threefolds II"Compositio Math.. 125. 55-68 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 並河良典: "Extension of 2-forms and symplectic Varieties"J.Reine Angew.Math.. 539. 123-147 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 並河良典: "Stratified local moduli of Calabi-Yau threefold"Topology. (掲載予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 並河良典: "Projectivity Criterion of Moishegon spaces and density of projective simplectic varieties"Intern.J.Math. (掲載予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 並河良典: "Deformation theory of Calabi-Yaus"Sugaku exposition (AMS). (掲載予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 並河良典: "Calabi-Yaus and Deformation Theory"Sugaku exposition, American Math.Soc.. (刊行予定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 並河良典: "Global smoothing of Calabi-Yau threefolds II"Compositio Math.. (刊行予定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 並河良典: "Deformation theory of singular symplectic n-folds"Math.Ann.. (刊行予定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 並河良典: "Extension of 2-forms and symplectic varieties"J.fiir reine angew.Math. (刊行予定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 宮西正宜(増田氏と共著): "Etale endomorphisms of algebraic surfaces with Gm-actions"Math.Ann.. (刊行予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 藤木明: "Compact self-dual manifolds with torus actions"J.Diff Geometry. (刊行予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 宮西正宜: "open algebraic Aurfaces"Amer, Math. Soc.. (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi