• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Recent development of special functios ----an approach from the representation thery and the complex integrals

Research Project

Project/Area Number 12440010
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Institute of Technology

Principal Investigator

MIMACHI Katsuhisa  Tokyo Institute of Technology, Graduate school of Science and Technology, Professor, 大学院・理工学研究科, 教授 (40211594)

Co-Investigator(Kenkyū-buntansha) KUROKAWA Nobushige  Tokyo Institute of Technology, Graduate school of Science and Technology, Professor, 大学院・理工学研究科, 教授 (70114866)
KANEKO Masanobu  Kyushu Univ., Graduate school of Mathematics, Professor, 大学院・数理学研究院, 教授 (70202017)
TAKATA Toshie  Niigata Univ., Fac.of Sciences, Associate Professor, 理学部, 助教授 (40253398)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥7,300,000 (Direct Cost: ¥7,300,000)
Fiscal Year 2002: ¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2001: ¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2000: ¥2,700,000 (Direct Cost: ¥2,700,000)
Keywordsrepresentation theory / twisted homology group / complex integrals / hypergeometric functiom / conformal field theory / intersection forms / correlation functions / zeta function / ゼータ函数 / 共形場理論 / 岩堀・ヘッケ環 / 組み紐群 / ツイストサイクル / KZ方程式 / セルバーグ型積分 / 球函数
Research Abstract

Mimachi realized an irreducible representation of the Iwahori-Hecke algebra on the twisted homology group associated with a Selberg type integral. It was first constructed in the context of conformal field theory by Tsuchiya-Kanie. Our construction is based on the study of the homology group under a resonant condition on the exponents of integrals. We stress the importance of the study of integrals under such a resonant condition to the study of hypergeometric type functions and spherical functions. Mimachi with H.Ochiai (Nagoya) and M.Yoshida (Kyushu) formulated the concept of visible cycles and invisible cycles, and determined the dimension of the spaces of visible cycles under a resonant condition in some examples. Mimachi with M.Yoshida calculated some examples of the intersection numbers of twisted cycles associated with a Selberg type integral. It gives a natural interpretation of the coefficients of the four-point correlation function calculated by Dotsenko -Fateev. This is an answer to the long standing problem of clarifying the meaning of such coefficients appearing in correlation functions. In higher dimensional cases, the Terada model (nonsingular model arising from the point configuration) plays an important role. Kurokawa with M.Wakayama (Kyushu Univ.) studied generalized zeta regularizations. It shows that a discrete version of intersection numbers of twisted cycles should be settled. Kaneko studied Atkin's orthogonal polynomial from the viewpoint of automorphic forms and hypergeometric functions. Takata studied the volume conjecture by Kashaev from our viewpoint. She also carried out the numerical experiment to give an affirmative support to the volume conjecture.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (27 results)

All 2003 2002 Other

All Journal Article (11 results) Publications (16 results)

  • [Journal Article] Intersection numbers of twisted cycles and the correlation functions of the conformal field theory2003

    • Author(s)
      K.Mimachi, M.Yoshida
    • Journal Title

      Commun.Math.Phys. 234

      Pages: 339-358

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] Intersection theory for loaded cycles IV ‥resonant cases2003

    • Author(s)
      K.Mimachi, H.Ochiai, M.Yoshida
    • Journal Title

      Math.Nachr. 260

      Pages: 67-77

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] Multiple sine functions2003

    • Author(s)
      N.Kurokawa, S.Koyama
    • Journal Title

      Forum Math. 15

      Pages: 839-876

    • NAID

      110004827097

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] On modular forms arising from a differential equation of hypergeometric type2003

    • Author(s)
      M.Koike, M.Kaneko
    • Journal Title

      Ramanujan J. 7

      Pages: 145-164

    • NAID

      120003631329

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] Intersection numbers of twisted cycles and the correlation functions of the conformal field theory.2003

    • Author(s)
      K.Mimachi, Masaaki Yoshida
    • Journal Title

      Commun.Math.Phys. 234

      Pages: 339-358

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] The reciplocity relation of the Selberg function.2003

    • Author(s)
      K.Mimachi, Masaaki Yoshida
    • Journal Title

      J.Comput.and Appl.Math. 160

      Pages: 209-215

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] Intersction theory for loaded cycles IV---resonant cases.2003

    • Author(s)
      K.Mimachi, Hiroyuki Ochiai, Masaaki Yoshida
    • Journal Title

      Math.Nachr. 260

      Pages: 67-77

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] Multiple sine functions.2003

    • Author(s)
      N.Kurokawa, S.Koyama
    • Journal Title

      Forum Math. 15

      Pages: 839-876

    • NAID

      110004827097

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] On modular forms arising from a differential equation of hypergeometric type.2003

    • Author(s)
      M.Kaneko, M.Koike
    • Journal Title

      Ramanujan J. 7

      Pages: 145-164

    • NAID

      120003631329

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] Kashaev's conjecture and the Chern-Simons invariants of knots and links2002

    • Author(s)
      Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, Yoshiyuki Yokota
    • Journal Title

      Experimental Mathematics 11

      Pages: 447-455

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Journal Article] Kashaev's conjecture and the Chern--Simons invariants of knots and links.2002

    • Author(s)
      H.Murakami, J.Murakami, M.Okamoto.T.Takata, Y.Yokota
    • Journal Title

      Experimental Math. 11

      Pages: 447-455

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Mimachi, M.Yoshida: "Intersection numbers of twisted cycles and the correlation functions of the conformal field theory"Commun. Math. Phys.. 234. 339-358 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Mimachi, H.Ochiai, M.Yoshida: "Intersection theory for loaded cycles IV --resonant cases"Math. Nachr.. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, Yoshiyuki Yokota: "Kashaev's conjecture and the Chern-Simons invariants of knots and links"Experimental Mathematics. vol.11, no.3. 447-455 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Kurokawa, S.Koyama: "Multiple sine functions"Forum Math.. (in press, 2002).

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Kurokawa, M.Wakayama: "Casimir effects on Riemann surfaces"Indag. Math. 13. 63-75 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Kurokawa, H.Ochiai, M.Wakayama: "Multiple trigonometry and zeta functions"J. Ramanujan Math. Soc. 17. 101-113 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Mimachi: "A duality of the Macdonald-Koornwinder polynomials and its application to the integral representations"Duke Math. J.. 107. 265-281 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Kaneko, N.Todaka: "Hypergeometric modular forms and supersingular elliptic curves"Proceedings on Moonshine and related topics (J. Mckay and A. Sebbar ed.), CRM Proceedings and Lecture Notes. Vol.30. 79-83 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Kaneko, K.Tachibana: "When is a polygonal pyramid number again polygonal?"Rockey Mountain J.. (to appear).

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Kurokawa, S.Koyama: "Multiple sine functions"Forum Math.. (in press). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.kurokawa, M.Wakayama: "Casimir effects on Riemann surfaces"Indag. Math.. (in press). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Kurokawa, M.wakayama: "On zeta(3)"J. Ramanujan Math. Soc.. 16. 205-214 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Mimachi: "A duality of the Macdonald-Koornwinder polynomials and its application to the integral representations"Duke Math.J.. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Kaneko: "The Akiyama-Tanigawa algorithm for Bernoulli numbers"Electronic J.of Integer Sequences http : //www.research.att.com/〜njas/sequences/JIS/. 3. (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Kaneko: "Hypergeometric modular forms and supersingular elliptic curves"Proceedings of the Moonshine conference in Montreal 1999 . (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Kaneko: "When is a polygonal pyramid number again polygonal?"Rocker Mountain J.. (to appear).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi