• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Pattern dynamics and asymptotic analysis in reaction-diffusion systems

Research Project

Project/Area Number 12440023
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTohoku University

Principal Investigator

YANAGIDA Eiji  Tohoku University, Mathematical Institute, Professor, 大学院・理学研究科, 教授 (80174548)

Co-Investigator(Kenkyū-buntansha) EI Shin-ichiro  Yokohama City University, Graduate School of Integrated Science, Associate Profesor, 大学院・総合理学研究科, 助教授 (30201362)
SATO Tokushi  Tohoku University, Mathematical Institute, Research Assistant, 大学院・理学研究科, 助手 (00261545)
TAKAGI Izumi  Tohoku University, Mathematical Institute, Professor, 大学院・理学研究科, 教授 (40154744)
KUWAMURA Masataka  Kobe University, Faculty of Human Development, Associate Professor, 発達科学部, 助教授 (30270333)
稲葉 寿  東京大学, 大学院・数理科学研究科, 助教授 (80282531)
高橋 勝雄  東京大学, 大学院・数理科学研究科, 助手 (90114529)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥10,100,000 (Direct Cost: ¥10,100,000)
Fiscal Year 2002: ¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 2001: ¥3,100,000 (Direct Cost: ¥3,100,000)
Fiscal Year 2000: ¥4,000,000 (Direct Cost: ¥4,000,000)
Keywordsreaction-diffusion system / activator-inthibitor system / skew-gradient systern / bifurcation / pattern formation / eigenvalue analysis / steady state / stability / 興奮一抑制 / 自己相似解 / 解の爆発 / 興奮ー抑制系
Research Abstract

In this project, we study the following problems by combining analytical and numerical methods
(1) Applying the the theory of infinite dimensional dynamical systems, we show the spatial monetonicity of stable solutions in shadow systems. Also, we obtained a variational characterization of stable steady states for r skew-gradient reaction-diffusion systems
(2) We studied the stability of steady states in an activator-inhibitor system proposed by Gierer and Meinhardt. For annular domains, any steady state is stable if it has a local maximum at a point where the boundary of the domain has a maximum curvature
(3) Steady states of reaction-diffusion systems are obtained by solving associated elliptic boundary value problems. Here, we showed the existence and bifurcation of non-trivial solution for some nonlinear elliptic equations
(4) Complex pattern dynamics obsrved in reaction-diffusion systems can be understood in terms of weak or strong interaction of localized pulses. We studied the dynamics by using asymptotic methods
(5) Activator-inhibitor systems in morphogenesis, Swift-Hohenberg equation for thermal convection, etc. can be formulated in terms of gradient or skew-gradient systems. For such systems, we showed that the Eckhaus and zigzag zigzag instabilities can be observed generically for striped Patterns

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (32 results)

All Other

All Publications (32 results)

  • [Publications] Wei-Ming Ni: "Monotonicity of stable solutions in shadow systems"Trans. Amer. Math. Soc.. 353. 5057-5069 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Eigi Yanagida: "Mini-maximizers in reaction-diffusion systems with skew-gradient structure"J. Differential Equations. 179. 311-335 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Eigi Yanagida: "Standing pulse solutions in reaction-diffusion systems with skew-gradient structure"J. Dynamics Differential Equations. 4. 189-205 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Wei-Ming Ni: "Stability of least energy patterns of the shadow system for an activator-inhibitor model"Japan J. Indust. Appl. Mathematics. 18. 259-272 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shin-Ichiro Ei: "The motion of weakly interacting pulses in reaction-diffuison systems"J. Dynamics Differential equations. 14. 85-137 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M.Kuwamura: "The Eckhans and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 柳田英二, 栄伸一郎: "常微分方程式論"朝倉書店. 224 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] W.-M.Ni, P.Polacilc, E.Yanagida: "Monotonicity of stable soltutions in shadow systems"Trans.Amer.Math Soc. 353. 5057-5069 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] E.Yanagida: "Mini-maximizers in reaction-diffusion systems with skew-gradient structure"J. Diff. Eqs. 79. 311-335 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] E,Yanagida: "Standing pulse solutions in reaction-diffusion systems with skew-gradient structure"J. Dyn. Diff. Eqs. 4. 189-205 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] W.-M.Ni, I.Takagi, E.Yanagida: "Stability of least energy patterns of the shadow system for an activator-inhibitor model"Japan J. Indust. Appp. Math. 18. 259-272 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S,-I,Ei: "The motion of weakly interacting pulses in reaction-diffusion systems"J.Dyn. Diff.Eqs. 14. 85-137 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M.Kuwamura, Eiji Yanagida: "The Eckhaus and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] P.Polacik, E.Yanagida: "Stable subharmonic solutions or reaction-diffusion equations on an arbitrarv domain"Disc. Cont. Dyn. Systems. 8. 209-218 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Kabaya, E.Yanagida, S.Yotsutani: "Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems"Comm. Pure Appl. Anal.. 1. 85-102 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.-I.Ei, J.Wei: "Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in"Japan J. Ind. Appl. Math.. 19・2. 111-226 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.-I.Ei: "The motion of weakly interacting pulses in reaction-diffusion systems"J. Dyn. Diff. Eqs.. 14・1. 85-137 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Kuwamura, Eiji Yanagida: "The Eckhaus and zigzag instability criteria in gradient/skewgradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] J.Nagasawa, I.takagi: "Bifurcating critical points of bending energy under constraints related to the shape of red blood cells"Calculus of Variations.

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Mizuguchi, E Yanagida: "Life span of solutions with large initial data in a semilinear parabolic equation"Indiana Math. J.. 50. 591-610 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Mizuguchi, E Yanagida: "Life span of solutions for a Semilinear Parabolic Problem with Small Diffusion"J. Math. Anal. Appl. 261. 350-368 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] W.-M.Ni, P.Polacik, E.Yanagida: "Monotonicity of stable solutions in shadow systems"Trans. Amer. Math. Soc. 353. 5057-5069 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] W.-M.Ni, Takagi, E.Yanagida: "Stability of least energy patterns of the shadow system for an activator-inhibitor model"Japan J .Indust. Appl. Math.. 18・2. 259-272 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.-I.Ei, Y.Nishiura, K.Ueda: "$2\sp n$-splitting or edge-splitting? A manner of splitting in dissipative systems"Japan J. Indust. Appl. Math. 18・2. 181-205 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Kuwamura: "A perspective of renormalization group approaches"Japan J. Indust. Appl. Math. 18・2. 739-768 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 柳田英二, 栄伸一郎: "微分方程式論"朝倉書店. 224 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] E.Yanagida: "Extinction and blowup of positive radial solutions for a semilinear elliptic equation"Nonlinear Analysis. 39・3. 365-377 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Hirose and E.Yanagida: "Global structure of self-similar solutions in a semilinear parabolic equation"J.Math.Anal.Appl.. 244・2. 348-368 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Morishita,E.Yanagida and S.Yotsutani: "Structural change of solutions for a scalar curvature equation"Diff.Int.Eqs.. 14. 273-288 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] P.Polacik and E.Yanagida: "Existence of stable subharmonic solutions for reaction-diffusion equations"J.Differential Equations. 169. 255-280 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] S.-I.Ei,K.Fujii and T.Kunihiro: "Renormalization-group method for reduction of evolution equations ; invariant manifolds and envelopes"Ann.Physics. 280. 236-298 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] W.-M.Ni,I.Takagi and E.Yanagida: "Stability of least energy patterns of the shadow system for an activator-inhibitor model."Japan J.Indust.Appl.Math..

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi