• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Bifurcation analysis for periodic patterns appearing in nonlinear dynamical systems

Research Project

Project/Area Number 12440026
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOsaka University

Principal Investigator

OGAWA Toshiyuki  Osaka University, Graduate school of Engineering Science, Associate Professor, 基礎工学研究科, 助教授 (80211811)

Co-Investigator(Kenkyū-buntansha) KUWAMURA Masataka  Kobe University, Faculty of Human Development, Associate Professor, 発達科学部, 助教授 (30270333)
SUZUKI Hiromasa  Shiga Univeisity, Faculty of Education, Lecturer, 教育学部, 講師 (60280450)
KAMETAKA Yoshinori  Osaka University, Graduate school of Engineering Science, Professor, 基礎工学研究科, 教授 (00047218)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥4,700,000 (Direct Cost: ¥4,700,000)
Fiscal Year 2002: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2001: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2000: ¥1,700,000 (Direct Cost: ¥1,700,000)
Keywordsperiodic traveling wave / mode interaction / modulated wave / Eckhaus instability / gradient / skew gradient system / global bifurcation / numerical verification
Research Abstract

Structures of periodic patterns (periodic stationary solutions or traveling wave solution whose wave profile is periodic) are studied. More precisely, we study bifurcations of these solutions, stability of bifiucated solutions secondary bifurcation and the dynamics around them. First we study the behavior of periodic solutions to a perturbed integrable systems which is originally a physical problem that describe wave motion on a liquid layer over an inclined plane. Nest, these method turns out to be applicable to more general nonlinear wave phenomena, such as the Swift-Hohenberg equation which is a simple model of thermal convection. By the mathematical rigorous normal form analysis, sometimes referred to as "weak nonlinear analisys", we could show the existence of non-trivial stable mixed mode solutions to these equations and this corresponds to the modulated wave solutions. In the case of Swift-Hohenberg equation we found a localized patterns of pulses as well as the mixed mode solution by using the numerical simulation. And later we prove the existence of these solutions by numerical verification technique.
On the other hand we study the stability of periodic patterns in the context of gradient/skew gradient systems. As a result, we could show that activator-inhibitor system and the Swift-Hohenberg equations are skew gradient and also the dynamics of periodic roll patterns in these system are controlled by the Eckhaus instability and Zigzag instability.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] 平岡裕章, 小川知之, K.Mischaikow: "Swift-Hohenberg方程式の定常解大域分岐のConley指数を用いた検証"日本応用数理学会論文誌. 13(2)(発行予定). (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Ogawa: "Periodic travelling waves and their modulation"Japan Journal of Industrial and Applied Mathematics. 18(2). 521-542 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 亀高惟倫, 竹居賢治, 永井敦: "円板内の重調和作用素に対するグリーン関数とポアッソン関数"数理解析研究所講究録. 1302. 60-67 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Kametaka, K.Takemura, Y.Suzuki, A.Nagai: "Positivity and hierarchical structure of Green's functions of 2-point boundary value problems for bending of a beam"Japan Journal of Industrial and Applied Mathematics. 18(2). 543-566 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Masataka Kuwamura, Eiji Yanagida: "The Eckhaus and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Masataka Kuwamura: "A perspective of renormalization group approaches"Japan Journal of industrial and applied mathematics. 18(3). 739-768 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Ogawa: "Periodic travelling waves and their modulation"Japan Journal of Industrial and Applied Mathematics. 18(2). 521-542 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Hiraoka, T.Ogawa and K.Mischaikow: "Conley Index Based Numerical Verification Method for Global Bifurcations of the Stationary Solutions to the Swift-Hohenberg Equation"Transactions of the Japan Society for Industrial and Applied Mathematics. 12(2). (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y. Kametaka, K. Takemura, Y. Suzuki and A. Nagai: "Positivity and hierarchical structure of Green's functions of 2-point boundary value problems for bending of a beam"Japan Journal of Industrial and Applied Mathematics. 18(2). 543-566 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Kuwamura: "A perspective of renormalization group approaches"Japan Journal of Industrial and Applied Mathematics. 18(3). 739-768 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Kuwamura and E. Yanagida: "The Eckhaus and zigzag Instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 平岡裕章, 小川知之, K.Mischaikow: "Swift-Hohenberg方程式の定常解大域分岐のConley指数を用いた検証"日本応用数理学会論文誌. (発表予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] 亀高惟倫, 竹居賢治, 永井敦: "円板内の重調和作用素に対するグリーン関数とポアッソン関数"数理解析研究所講究録. 1302. 60-67 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Masataka Kuwamura, Eiji Yanagida: "The Eckhaus and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Ogawa: "Periodic travelling waves and their modulation"Japan Journal of Industrial and Applied Mathematics. 18(2). 521-542 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Masataka Kuwamura: "A perspective of renormalization group approaches"Japan Journal of Industrial and applied Mathematics. 18(3). 739-768 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Kametaka, K.Takemura, Y.Suzuki, A.Nagai: "Positivity and hierarchical structure of Green's functions of 2-point boundary value problems for bending of a beam"Japan Journal of Industrial and Applied Mathematics. 18(2). 543-566 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] To Ogawa: "Periodic travelling waves and their modulation"Japan Journal of Industrial and Applied Mathematics. 18(2)(掲載予定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小川知之: "周期波とその分岐構造-液膜流におけるパターン形成-"数理科学. 38(8). 28-35 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi