Project/Area Number |
12440045
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Waseda University |
Principal Investigator |
SHIBATA Yoshihiro Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (50114088)
|
Co-Investigator(Kenkyū-buntansha) |
YAMAZAKI Masao Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (20174659)
KAJI Hajime Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (70194727)
TANAKA Kazunaga Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (20188288)
KOBAYASHI Takayuki Saga University, The department of Sciences, Assistant Professor, 理学部, 助教授 (50272133)
SHIMIZU Senjo Shizuoka University, The department of Engineering, Assistant Professor, 工学部, 助教授 (50273165)
|
Project Period (FY) |
2000 – 2003
|
Project Status |
Completed (Fiscal Year 2003)
|
Budget Amount *help |
¥14,600,000 (Direct Cost: ¥14,600,000)
Fiscal Year 2003: ¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2002: ¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2001: ¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥3,800,000 (Direct Cost: ¥3,800,000)
|
Keywords | Oseen equation / Flew in the infinite layer / Stokes operator / Stability of the flew / Resolvent problem / Incompressible viscous fluid flow / Compressible viscous fluid flow / Free boundary value problem / 数学 / 基礎解析 / n-dim. Navier-Stokes equation / Stability / Ossen equation / Compressible fluid / 2 phase problem for the Stokes eq. / Ginzuburg-Landau-Maxwell eq. / Perfect wall conditon / Stokes eq. in the half space / Infinite layer domain / Ginzburg-Landau方程式 / 定常解の安定性 / Perfect wall condition / Stokes方程式 / オゼン方程式 / ストークス方程式 / 弾性体の方程式 / 2相問題 / 安定性 / 重み付き評価 |
Research Abstract |
1.Stability of the Oseen flow in the n-dimensional exterior domain (n>2). 2.Stability of the Couette flow and the Poiseuille flow in the infinite layer. 3.Rate of convergence of the non-stationary flow to the stationary flow of compressible viscous fluid. 4.Resolvent estimate of solutions to the Stokes equation with Neumann boundary condition.
|