• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Effectiveness of Kullback-Leibler Information As A Measure of Dependence

Research Project

Project/Area Number 12480063
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Statistical science
Research InstitutionKeio University

Principal Investigator

SHIBATA Ritei  Keio Univ., Dept. of Math., Professor, 理工学部, 教授 (60089828)

Co-Investigator(Kenkyū-buntansha) TAKAGIWA Mutsumi  Tokyo Dental Univ., Dental Dept. Associate Professor, 歯学部, 助教授 (30306849)
JIMBO Masakazu  Keio Univ., Dept. of Math., Professor, 理工学部, 教授 (50103049)
SHIMIZU Kunio  Keio Univ., Dept. of Math., Professor, 理工学部, 教授 (60110946)
KATO Takeshi  Keio Univ., Dept. of Math., Lecturer, 理工学部, 専任講師 (40267399)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥10,400,000 (Direct Cost: ¥10,400,000)
Fiscal Year 2002: ¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2001: ¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2000: ¥4,400,000 (Direct Cost: ¥4,400,000)
KeywordsBootstrap / Neural Network / Financial Time Sevies / Backpropagation / Graphical Model / Foreign Exchange Rate / Conditional Independence / Point Process / 情報量 / Kullback-Leibler / 関連性 / モデル選択 / 確率的ニューラネットワーク / 確率微分方程式 / 内連性
Research Abstract

The aim of this project is to investigate effectiveness of Kullback-Leibler information. In this project, various aspects of this information measure have been investigated.
We could show the effectiveness of Kullback-Leibler information as a criterion of model selection. It is clarified that Bootstrap type estimate of Kullback-Leibler information is quite powerful, particularly in case of discrete distributions like Binomial or Multinomial.
To ensure practical usefulness of model selection technique based on Kullback-Leibler information, we performed various type of real data analysis, In due course of analysis of interest rate time series, we found that neural network should be included in a family of statistical models to be selected. We then extended ordinary neural network to stochastic neural network and developed an efficient training algorithm. We also gave a mathematical proof of the convergence. The stochastic neural network is quite powerful, for example, it gives us the best one day ahead prediction of fall or rise of TOPIX with around 60% accuracy.
We also analyzed satellite radar received signals and instantaneous foreign exchange prices to investigate effectiveness of Kullback-Leibler information as a criterion for the processing. As a result, we found ten times precise data processing algorithm for the former and constructed a clustered Poisson marked process for the latter.
To investigate information flows on graphical model, we concentrated our attention into conditional independence which is a key idea in graphical modeling. As a result, we found that conditional independence is too strong condition to be realized unless in case of normal distribution or its monotone transformed distribution. However, we found that Kullback-Leibler information is a promising alternative measure in place of conditional independence.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] 柴田里程: "情報量基準による統計的モデル選択"電子情報通信学会論文誌. J84-A. 605-611 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 柴田里程, 上辻茂男: "時系列モデルと学習"IPSJ Magazine. 42. 27-31 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Kanitsuji, R.Shibata: "Leavning Algorithm for Stochastic Neural Network"Neural Network. (printing).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.Aoki, T.Kato, R.Shibata: "Ground Surface Reconstruction from Mixod SAR signal"IEEE. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Kanitsuji, R.Shibata: "Stochastic Neuval Network Can Predict weel"Proceedings of ICSO3. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M.Miyagawa, R.Shibata: "Aspects of Instantaneous FX Bid Prices"Proceedings of ICSO3. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 柴田里程: "データリテラシー"共立出版. 171 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Ritei Shibata: "Information Criteria for Statistical Model Selection"Electronics and Communications in Japan. Part3, Vol.85. 605-611 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Ritei Shibata and Shigeo Kamitsuji: "Time servies and Learning (in Japanese)"IPSJ Magazine. 42. 27-31 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shigeo Kamitsuji and Ritei Shibata: "Learning Algorithm foer Stochastic Neural Network"To appear in Neural Network. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y. Aoki, T. Kato and R. Shibata: "Ground Surface Recenstruction from Mixed SAR Signal"To appear in IEEE Transections on Aerospace and Electronic Systems.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Ritei Shibata: "Data literacy (in Japanese)"Kyouvitz pub.. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Ritei Shibata: "Information Criteria for Statistical Model Selection"Electronics and Communication in Japan. Part3,85. 32-38 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Shigeo Kamitsuji, Ritei Shibata: "Learning Algorithm for Stochastic Neural Network"Neural Computation. (To appear). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] 柴田里程, 上丘茂男: "時系列モデルと学習-金融時系列として-"情報処理. 42. 27-31 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] R.Shibata: "Information Criteria for Statistical Model Selection"Electronics and Communication in Japan. 86. 32-38 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] R.Shibata, H.Sunami: "Effect of Discrete Time Sampling from Stochastic…"Sankhya. (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 柴田里程: "情報量基準によるモデル選択"電子情報通信学会論文誌. J83-A. 605-611 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 柴田里程,上辻茂男: "時系列モデルと学習-金融時系列と例として-"情報処理. 42. 27-31 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Mishima and M.Jimbo: "Recursive constructions for cyclic quasifram as..."Discrete Math. 211. 135-152 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Mishima,M.Jimbo and T.Shirakuro: "On the optimality of orthogonal arrays in case of"J.Statist.Plann.Inference. 88. 319-338 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Mimani,M.Shinigu S.N.Mishra: "ML and REML estimation of Matsusita's measure..."Americal Journal of Math and Mar.Sci. 20. 39-69 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Noda,K,Wu,Q.G.and Shimigu,K.: "Admissihility and Inadmissihility of a ..."Statistical panniy and Inference. 93. 197-210 (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi