• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on agebraic geometry in positive characteristic, coding theory and cryptography

Research Project

Project/Area Number 12554001
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section展開研究
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

KATSURA Toshiyuki  The University of Tokyo, Graduate School of Mathmatical Sciences, Professor, 大学院・数理科学研究科, 教授 (40108444)

Co-Investigator(Kenkyū-buntansha) TERASOMA Tomohide  The University of Tokyo, Graduate School of Mathmatical Sciences, Associate. Professor, 大学院・数理科学研究科, 助教授 (50192654)
OKAMOTO Kazuo  The University of Tokyo, Graduate School of Mathmatical Sciences, Professor., 大学院・数理科学研究科, 教授 (40011720)
OKAMOTO Tatsuaki  NTT, Institute on Information Sharing Laboratory, Chief Researcher., 情報流通プラットフォーム研究所, 主席研究員
TAKAYAMA Nobuki  Kobe University, Faculty of Sciences, Professor, 理学部, 教授 (30188099)
KATO Akishi  The University of Tokyo, Graduate School of Mathmatical Sciences, Associate Professor., 大学院・数理科学研究科, 助教授 (10211848)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥9,400,000 (Direct Cost: ¥9,400,000)
Fiscal Year 2002: ¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2001: ¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2000: ¥3,700,000 (Direct Cost: ¥3,700,000)
KeywordsPositive characteristic / Artin-Mazur formal group / Cartier operator / Moduli space / Chow group / Calabi-Yau variety / Abelian surface / Cryptography / ネロン・セヴェリ群 / イリュージー層 / ハイト / 符号 / ド・ラムコホモロジー群 / フロベニウス写像 / ホッジフィルトレーション / a-数 / 形式的ブラウワー群 / モジュウイ空間 / 公開鍵暗号 / 量子計算機 / NP問題
Research Abstract

Let M be the moduli stack of principally polarized abelian surfaces over an algebraically closed field κ of positive characteristic, and let π: X ―― M be the universal family. For an integer h, we set M^<(h)> = {X ∈ M | height Φx 【greater than or equal】 h}. Take the point x ∈ M which correspoads to a principally polarized abelian surface (A,D,σ), and assume that the height h of the formal Brauer group Φ>_A is finite. Then, we could prove that Im H^1(A, Z_h) = 7 - h and that the tangent space of M^<(h)> at x is isomorphic to {Im H^1(A,Z_h)}∩D^〓 ⊂ H^1(A,Ω^1_A). Now, let X be an nonsingular complete algebraic variety over k of dimension n, and let H_μR(X) be the de Rham cohomology group of X. Then, H_<dR>(X) has the Hodge fltration H_<dR>(X) = F_0 ⊃ F_1 ⊃ … ⊃ F_n and the Frobenius mapping F acts on H_<dR>(X). We define the a-number by a(X) = max{i | F^*H_<dR>(X) ⊂ F_i}. We can show that for an abelian variety X this number coincides with the a-number defined by F. Oort. If the Hodge to de Rham spectral sequence degenerates at E_1-level, then F^* induces a mapping H^n(X,Ox) = F_0/F_1 ―― H_<dR>(X). Therefore, we have a(X) = max{i | F^*H^n(X,Ox) ⊂ F_i} and we can compute this number for various varieties. We also make clear the relation between the a-number and the height h of the Artin-Mazur formal group. Finally, for a Calabi-Yau variety X of dimension n 【greater than or equal】 3, we showed that the natural homomorphism NS(X)/pNS(X) OF_p k ―― H^1(Ω^1_X) ⊂ H^2_<dR>(X) is iujective under the assumption H^0(X,Ω^i_X) = 0 (i = 1, 2). As for the cryptography, T. Okamoto et al. gave a precise proof on the security of the public-key cryptosystem which is called RSA-OAEP.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] G.van der Geer: "On a stratification of the moduki of K3 surfaces"J. Eur. Math. Soc.. 2. 259-290 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G.van der Geer: "Formal Brauer groups and a stratification of the moduli of abelian surfaces"Progress in Math.. 195. 185-201 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G.van der Geer: "An invariant for varieties in positive characteristic"Contemporary Math.. 300. 131-141 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 桂 利行: "デジタルと符号理論"数学通信,日本数学会. 6-1. 4-15 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 桂 利行: "デジタルの数学"数学のたのしみ. 21. 54-65 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Okamoto: "The Gap-Problems : a New Class of Problems for the Security of Cryptographic Schemes"The proceedings of PKC'01, LNCS. 1992. 104-118 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G. van der Geer and T, Katsura: "On a stratification of the moduli of K3 surfaces"J. Eur. Math. Soc.. 2. 259-290 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G. van der Geer and T. Katsura: "An invariant for varieties in positive characteristic"Contemporary Math.. 300. 131-141 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Katsura: "Digit and coding theory (in Japanese)"Sukaku-tsushin. 6-1. 4-15 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Katsura: "Mathematics for digital machine (in Japanese)"Have fun with mathematics. 21. 54-65 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G. van der Geer and T. Katsura: "Formal Brauer groups and a stratification of the moduli of abeiian surfaces in Moduli of Abelian Varieties, Proc. of Intl. Conf. in Texel, 1999, Progress in Math. 195"Birkhauser. 185-202 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Okamoto and D. Pointcheval: "The Gap-Problems : a New Class of Problems for the security of Cryptographic Schemes , The proceedings of PKC'01, LNCS 1992"Springer-Verlag. 104-118 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G.van der Geer: "An invariant for varieties in positive characteristic"Contemporary Math.. 300. 131-141 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 桂 利行: "符号・暗号理論と正標数の代数幾何学"日本数学会年会企画特別講演予稿集. 69-79 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 桂 利行: "射影空間入門"数学セミナー. 41-7. 42-47 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 桂 利行: "真理を求めて--日本人名のついた数学の理論"電子情報通信学会誌. 86-1. 21-25 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Okamoto: "A new approach to Knapsack cryptosystems"Proc. of WISA2002. 3. 33-42 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Terasoma: "Mixed Tate motives and multiple zeta values"Invent. Math.. 149. 339-369 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] G.van der Geer: "An invariant for varieties in positive characteristic"Parshin記念論文集(math.AG/0201246). (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 桂 利行: "コンパクトディスクから流れる数学のメロディー(デジタルと符号理論)"数学通信. 6巻1号. 4-15 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] G.van der Geer: "Formal Brauer group and a stratification of the moduli of abelian surfaces"Progress in Mathematis(Proc.Intl.Cont.in Texel). 195. 185-202 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] G.van der Geer: "On a stratification of the moduli of k3 surfaces"J.Eur.Math.Soc.. 2. 259-290 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] 桂 利行: "符号・暗号理論と正標数の代数幾何"日本数学会年会総合講演・企画特別講演アブストラクト集. (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] G.vander Geer & T.Katsura: "On a stratification of the moduli of K3 surfaces"J.Eur.Math.Soc.. 2. 259-290 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] G.vander Geer & T.Katsura: "Formal Brauer groups and a stratificatin of the moduli of abelian surfaces"to appear in Proc.of Intl.Conf.in Texel,1999.

    • Related Report
      2000 Annual Research Report
  • [Publications] 桂利行: "デジタルの数学"数学のたのしみ. 21. 54-65 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Terasoma: "Convolution theorem for non-degenerate maps and composite singularities"J.Algebraic Geometry. 9. 265-287 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] E.Fujisaki & T.Okamote: "Achosen-Cipher Secure Encryption Scheme Tightly as Secure is Factoring"IEICE Transactions. E84-A-1. 179-187 (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi