• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Data-Adapted Wavelets for Analysis of Observational Data

Research Project

Project/Area Number 12554003
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section展開研究
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKYOTO UNIVERSITY (2003)
The University of Tokyo (2000-2002)

Principal Investigator

YAMADA Michio  YAMADA,Michio, 数理解析研究所, 教授 (90166736)

Co-Investigator(Kenkyū-buntansha) SAKAKIBARA Susumu  Tokyo Denki University, School of Information Environment, Professor, 情報環境学部, 教授 (70196062)
OHKITANI Koji  Research Institute for Mathematical Sciences, Associate Professor, 数理解析研究所, 助教授 (70211787)
OKAMOTO Hisashi  Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (40143359)
KOBAYASHI Mei  IBM, Tokyo Research Laboratory, Advisory Researcher, 東京基礎研究所, 副主任研究員
SASAKI Fumio  Kajima Co., IT solution devision, Senior Researcher, ITソリューション部, 主査
薩摩 順吉  東京大学, 大学院・数理科学研究科, 教授 (70093242)
石岡 圭一  東京大学, 大学院・数理科学研究科, 助教授 (90292804)
Project Period (FY) 2000 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥13,300,000 (Direct Cost: ¥13,300,000)
Fiscal Year 2003: ¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 2002: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2001: ¥4,900,000 (Direct Cost: ¥4,900,000)
Fiscal Year 2000: ¥4,800,000 (Direct Cost: ¥4,800,000)
Keywordswavelet transformation / orthogonal wavelets / biorthogonal wavelets / symbol functions / variational problem / constraints / seismic wave / entropy / 双直交ウェーブレット / 地震波形 / 離散ウェーブレット / メイヤーウェーブレット / ドブシーウェーブレット / 直交ウェーブレット / 応答スペクトル / 模擬地震波 / ウェーブレット解析 / 離散ウェーブレット変換 / データ解析 / 時系列解析 / 時間周波数解析 / 応用スペクトル解析 / データ処理 / 数値計算
Research Abstract

A construction method is proposed for a biorthogonal wavelet which approximates an arbitrary given target function. This method is expected to be useful in the cases where the given data is a superposition of the target functions dilated, and translated. The biorthogonal wavelet then provides an efficient decomposition of the given data into the elements of events. The biorthogonal wavelet is obtained by Lagrange's multiplier method minimizing the L2 norm of the difference between the target function and the primary wavelet. As an example, this method is applied to some target functions to produce biorthogonal wavelets close to these functions. Some seismic signals are decomposed by wavelet expansion with some of these adapted-biorthogonal wavelets, which are found to have less entropy than the expansions with Meyer and Daubechies wavelets. In this research project, engineearing applications of' wavelets were also studied in several fields, including construction of artificial seismic signals, oscillation analysis, fractional derivative viscoelasticity models.

Report

(5 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (46 results)

All Other

All Publications (46 results)

  • [Publications] Yamada, M.: "A construction method for data adapted wavelet"Jpn.J.Indust.Appl.Math.. 18-2. 307-320 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Nakao, H.: "Visualization of correlation cascade in spatio-temporal chaos using wavelets"Int.J.Bif.Chaos. 11-5. 1483-1493 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yano, J.: "Wavelet decomposition of the spatial structure associated with mesoscale organized convection, Part I"J.Atmos.Sci.. 58-4. 850-867 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kobayashi, M.: "Wavelets and their application in industry"Nonlinear Analysis. 47. 1749-1760 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Sakakibara, S.: "Relaxation properties of fractional derivative viscoelasticity models"Nonlinear Analysis. 47. 5449-5454 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Satoh, N.: "Wavelet analysis of the longitudinal Shubnikov-de Haas oscillation in antimony"Jpn.J.Appl.Phys.. 41. 680-684 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 山田道夫: "マルチメディアライブラリー「ウェーブレット解析入門」"システム制御情報学会(DVD全4巻). (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] YAMADA, M. et al.: "A construction method for data adapted wavelet"Jpn.J. Indust.Appl.Math.. 18-2. 307-320 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] NAKAO, H. et al.: "Visualization of Title xxxxx xxxxx"Int.J.Bif.Chaos. 11-5. 1483-1493 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] YANO, J. et al.: "Wavelet decomposition of the spatial structure associated with mesoscale organized convection"J.Atmos.Sci. 58-4. 850-867 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] KOBAYASHI, M.: "Wavelets and their application in industry"Nonlinear Analysis. 47. 1749-1760 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Sakakibara, S.: "Relaxation properties of fractional derivative viscoelasticity models"Nonlinear Analysis. 47. 5449-5454 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] YAMADA, M. et al.: "Wavelets adapted to data-signals"Proc. 2nd Int'l Symp. Fontiers of Time Series Modeling. 93-102 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] SAKAKIBARA, S.: "Relaxation properties of fractional derivative viscoelasticity models"Nonlinear Analysis. 47. 5449-5454 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] KOBAYASHI, M. et al.: "Multiscale computing"Proc. US Natinal Academy of Sciences. 98. 12344-12345 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] N.SATOH et al.: "Wavelet analysis of the longitudinal Shubmikovde Haas oscillation in antimony"Jpn.J.Appl.Phys. 41. 680-684 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] MAEDA, T. et al.: "Artificial nonstationary seismic signal by using Sinc wavelets (in Japanese)"Bulletin of Architectural Institute of. Japan. 553. 33-40 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] SASAKI, F. et al.: "Nonstationarity parameters for seismic signals"Proc. of Annual Meeting of Architectural Institute of Japan Structure. 2. 107-112 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] TAMAOKI, T. et al.: "Generation of artificial earthquake motion using observed earthquake motions (in Japanese)"Bulletin of Japan Association for Earthquake Engineering. 3-3. 1-12 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] SASAKI, F. et al.: "Artificial ground motin with non-stationarity generated using the wavelet analysis"Proc. 17th Int'1 Conf.Struct.Mech, in Reactor Tech. K03-4. 1-8 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] KOBAYASHI, M.: "Data Stream Mining -selected tools and algorithms"Proc. of NANIT2003. (to appear in 2004).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 玉置哲夫: "実地震波の波形を利用した人工地震波の作成"日本地震工学会論文集. 3巻・3号. 1-12 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Fumio Sasaki: "Artificial Ground Motion with Non-Stationarity Generated using the Wavelet Analysis"17^<th> International Conference on Structural Mechanics in Reactor Technology, Prague. K03-4. 1-8 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Kobayashi: "Data Stream Mining-Selected tools and algorithms"Numerical Analysis and Numerically intensive Techniques, RIMS Kokyuroku. (To appear). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 山本佳史: "平均S波速度を考慮した経時特性パラメータのモデル化手法に関する研究"日本建築学会大会学術講演梗概集(東海). 構造II. 151-152 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Kato: "Unstable periodic solutions embedded in a shell model turbulence"Physical Review. E68. 025302(R)-1-025302(R)-4 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 山田 道夫: "スペクトル解析ハンドブック(日野幹雄(編))第2章「ウェーブレット解析」"朝倉書店. 66-83 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 山田 道夫: "マルチメディアライブラリー「ウェーブレット解析入門」"システム制御情報学会(DVD全4巻). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 佐々木文夫: "Sincウェーブレットを用いた非定常性を有する模擬地震動作成手法の研究"日本建築学会構造系論文報告集. 553. 33-40 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 佐々木文夫: "地震動の経時特性パラメータの研究"日本建築学会大会学術講演梗概集、構造II. 107-112 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Satoh: "Wavelet analysis of the longitukinal Shubnikov-de Haas oscillation in antimony"Japanese Journal of Applied Physics. Vol.41. 680-684 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Mei Kobayashi: "Wavelets and Their Applications in Industry"Proceedings of Engineering Maths and Applications Conference (EMAC 2002). 139-144 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Taniguchi: "Flow pattern formation in a two-dimensional flow on the rotating hemisphere bounded by the meridional line"Theoretical and Applied Mechanics. Vol.51. 217-223 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Yoden: "Pattern Formation in Two-Dimensional Turbulence on a Rotating Sphere"Statistical Theories and Computational Approaches to Turbulence. 317-326 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Yamada: "A construction method for date-adapted wavelet"Japan Journal of Industrial and Applied Mathematics. 18-2. 307-320 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] J.Yano: "Wavelet Decomposition of the Spatial Structure Associated with Mesoscale Organized Convection, Part I"Journal of Atmospheric Sciences. 58-4. 850-867 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Nakao: "Visualization of correlation cascade in spatio-temporal chaos using wavelets'"International Journal of Bifurcation and Chaos. 11-5. 1483-1493 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 佐々木文夫: "Sincウェーブレットを用いた模擬地震動作成手法の研究(その1、その2、その3)"日本建築学会大会学術講演梗概集(構造). 29-34 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Kobayashi: "Wavelets and their applications in industry"Nonlinear Analysis. 47. 1749-1760 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Kobayashi: "Applications of wavelets in industry-patenting trends Proc.2002 Int'l.Conf.on Numerical Analysis"Proc.Int'l.conf.on Numerical Analysis and Applications World Scientific Engineering Society, Cairns, Australia. 13-18 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Yamada: "A Construction Method for Data Adapted Wavelet"accepted in Japan Journal of Inductrial and Applied Mechanics. (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Yamada: "Wavelets Adapted to Data-Signals"Proceedings of 2nd Int'l Symp. on Frontiers of Time Series Modeling "Nonparametric Approach to Knowledge Discovery". 93-102 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 佐々木文夫: "ウェーブレット変換とその数値処理について"日本建築学会学術講演梗概集. 431-432 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Kobayashi: "Wavelet Analysis : Applications in Industry"Wavelet Analysis and Multiresolution Methods, Lecture Notes in Pure and Applied Mathematics. 167-202 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Nakao: "Visualization of correlation cascade in spatio-temporal chaos using wavelets"accepted in Int.J.Bif.Chaos.. (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Yano: "Wavelet Decomposition of the Spatial Structure Associated with Mesoscale Organized Convection, Part I"Journal of Atmospheric Sciences. 58. 850-867 (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi