Co-Investigator(Kenkyū-buntansha) |
SAI Yoshimichi Kanazawa University, Graduate School, Associate Professor, 大学院・自然科学研究科, 助手 (40262589)
TSUJI Akira Kanazawa University, Pharmaceutical Sciences, Professor, 薬学部, 教授 (10019664)
|
Budget Amount *help |
¥8,500,000 (Direct Cost: ¥8,500,000)
Fiscal Year 2001: ¥4,400,000 (Direct Cost: ¥4,400,000)
Fiscal Year 2000: ¥4,100,000 (Direct Cost: ¥4,100,000)
|
Research Abstract |
In the present study, we studied membrane transporters equippecd, in the brain capillary endothelial cells that are functional as the blood-brain barrier. Through this study, we found three new transporters that are expressed at the blood-brain barrier. One of those transporters are monocarboxylic acid transporter MGT1, which tworks for uptake and/or efflux organic weak acids such as lactic acid, pyruvic acid and benzoic acid. The second transporter is neutral amino acid transporters LAT1 and LAT2. These two amino acid transporters work for the uptake of amino acids that are relatively hydrdphpbic and large molecules, including leucine, tyrosine and phenylalanine. These are also important for the brain livery of L-DOPA that is effective for perkinsonism. The third transporter is OCTN2that is callsified as the carnitine/organic cation transporter. OCTN2 is a Na^+-dependent carnitine transporter and works for the brain uptake of acetyl-L-carhitirie that is expected to be useful for Aitzhe
… More
imer's disease. On the other hand, brain efflux transporters that protect brain from the toxic xenobiotics. As the model drugs, H1-antagonist, ebastine and carebasitine and fluoroquinolone, grepafloxacine, was used in the present study. Generally, fluoroquinolonesand H1 antagonists exhibit adverse effects such as epilepsy and sedative effects, while the drugs studied in the present study do not show such adverse effects. We expected that these drugs might not have enough permeability across the blood-brain barrier, resulting in the insufficient delivery to the brain to cause unfavorable adverse effects. Varipus Kinds of studies on the BBB transport of these drugs demonstrated that there are at least two types of brain efflux transporters, including p-glycoproteih and anion exchange transporter, of which molecular identification remains to be succeeded. All of these studies were performed by using various BBB-transport techniques. Especially, newly developed cell line RBEC1 that were derived from rat brain capillary endothelial cells was useful for the success of the present study. Furthermore, we challenged of the coculture of the endothelial cells and astrocytes in order to mimic the in vivo BBB. Although we partly succeeded to prepare the in vitro BBB model, further improvement will be essential for the efficient and complete model for the evaluation of blood-brain barrier transport. Less
|