• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of monoidal categories

Research Project

Project/Area Number 12640003
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHirosaki University

Principal Investigator

TAMBARA Daisuke  Faculty of Science and Technology, Hirosaki University, Assistant Professor, 理工学部, 助教授 (50163712)

Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2001: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 2000: ¥400,000 (Direct Cost: ¥400,000)
Keywordstensor category / Mackey category / テンソルカテゴリー / バーンサイド環 / ホップ代数
Research Abstract

Let A be a tensor category. We define the category D(A) as follows. An object of D(A) consists of the following data: vector spaces F(X,Y) for all objects X and Y ofA, linear maps F(X,Y)-->F(X',Y') for all morphisms X'-->X and Y->Y' of A, and linear maps F(X,Y) -->F(ZX,ZY) and F(X,Y) -->F(XZ,YZ) for all objects X, Y, and Z of A. These data should satisfy certain conditions. Here we denote by ZX the tensorproduct of Z and X in A. When A is semi-simple, the category D(A) is equivalent to the center of A. As an interesting example of non semi-simple tensor categories, we take A to be the Mackey category M of a finite group G. Then D(M) turns out to be equivalent to the category of a kind of Mackey functors over the category of connected G-sets equipped with automorphisms.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] D.Tambara: "Invariants and semi-direct products for finite group actions on tensor categories"J. Math. Soc. Japan. 53. 429-456 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] D.Tambara: "A duality for modules over monoidal categories of representations of semi-simple Hopf Hopf algebras"Journal of Algebra. 241. 515-547 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] D. Tambara: "Invariants and semi-direct products for finite group actions on tensor categories"J. Math. Soc. Japan. vol. 53. 429-456 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] D. Tambara: "A duality for modules over monoidal categories of representations of semi-simple Hopt algebras"J. Algebra. vol. 241. 515-547 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] D.Tambara: "Invariants and semi-direct products for finite group actions on tensor categories"J. Math. Soc. Japan. 53. 429-456 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] D.Tambara: "A duality for modules over monoidal categories of representations of semi-simple Hopf algebras"Journal of Algebra. 241. 515-547 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] D.Tambara: "A duality for modules over monoidal categories of representations of semisimple Hopf algebras"Journal of Algebra. (in press).

    • Related Report
      2000 Annual Research Report
  • [Publications] D.Tambara: "Invariants and semi-direct products for finite group actions on tensor categories"Journal of the Mathematical Society of Japan. (in press).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi