• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classification of Hopf algebras and quantum groups by tensor equivalences

Research Project

Project/Area Number 12640008
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of Tsukuba

Principal Investigator

MASUOKA Akira  University of Tsukuba, Inst.of Math., 数学系, 助教授 (50229366)

Co-Investigator(Kenkyū-buntansha) MASUDA Tetsuya  University of Tsukuba, Inst.of Math., 数学系, 助教授 (70202314)
MORITA Jun  University of Tsukuba, Inst.of Math., 数学系, 教授 (20166416)
TAKEUCHI Mitsuhiro  University of Tsukuba, Inst.of Math., 数学系, 教授 (00015950)
TANABE Kenichiro  University of Tsukuba, Inst.of Math., 数学系, 助手 (10334038)
FUJITA Hisamasa  University of Tsukuba, Inst.of Math., 数学系, 講師 (60143161)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2001: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsHopf algebra / Quantum group / Tensor equivalence / Cocfuasi-bialgebra / Crossed product / Hopf cohomology / Hochschild cohomology / 組紐構造 / ガロア対象
Research Abstract

Our new results are divided roughly into two. First, we have classified some range of coquasi-bialgebras, which generalize Hopf algebras, up to tensor equivalences of their comodule categories ; this was done by constructing related cohomology groups, in a very concrete way with use of braid diagrams. Second, we have obtained a new result on crossed products, and thereby proved in a unified way three famous theorems for affine group schemes ; this was based on the idea that the Hopf cohomology, which is non-abelian and multiplicative, can be approximated, in some sense, by the HochschiId cohomology, which is abelian and additive.
The results were annonced at the following conferences.
The 46-th Symposium on Algebra, Osaka Univ., July 30-August 2, 2001.
Non-commutative Geometry and Quantum Groups, Banach Center (Warsaw), September 17-29, 2001.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] Akira MASUOKA: "Defending the negated Kaplansky conjective"Proc. Amer. Math. Soc.. 129. 3185-3192 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J.Morita, E.Plokin: "Prescribed Gauss decompositions for Kac-Moody groups over fields"Rend. Sem. Mat. Univ. Padova. 106. 153-163 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kenichiro TANABE: "A new proof of the Assmus-Mattson theorem for non-binary codes"Design, Codes and Cyptography. 22. 149-155 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 森田 純: "Kac-Moody群講義"上智大学数学教室. 116 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Akira MASUOKA: "Defending the negated Kaplansky conjecture"Prop. Amer. Math. Soc.. 129, No. 1. 3185-3192 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Akira MASUOKA: "Hopf algebra extensions and cohomology"In : S. Montgomery and H.-J. Schneider (eds.), "New Directions in Hopf Algebras", MSRI Publ. Vol.43, Cambridge Univ. Press. 167-209 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun MORITA and Eugene PLOTKIN: "Prescribed Gauss decompositions for Kac-Moody aroups over fields"Rend. Sem. Mat. Univ. Padova. 106. 153-163 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kenichiro TANABE: "A new proof of the Assmus-Mattson theo-rem for non-binary codes"Design, Codes and Cryptography. 22. 149-155 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun MORITA: "Lectures on Kac-Moody groups (in Jpanese)"Sophia Kokyuroku in Math. No. 44. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Akira MASUOKA: "Defending the negated Kaplansky conjecture"Proc. Amer. Math. Soc.. 129(1). 3185-3192 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Jun MORITA, E.Plotkin: "Prescribed Gauss decompositions for Kac-Moody groups over fields"Rend. Sem. Mat. Univ. Padova. 106. 153-163 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kenichiro TANABE: "A new proof of the Assmus-Mattson theorem for non-binary codes"Design, Codes and Cryptography. 22. 149-155 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 森田 純: "Kac-Moody群講義"上智大学数学教室. 116 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Akira Masuoka: "Extensions of Hopf algebras and Lie bialgebras"Trans.Amer.Math.Soc.. 352・8. 3837-3879 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Akira Masuoka: "Cocycle deformations and Galois objects for some cosemisimple Hopf algebras of finite dimension"Contemporary Mathematics. 267. 195-214 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Mitsuhiro Takeuchi: "Survey of braided Hopf algebras"Contemporary Mathematics. 267. 301-323 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Yikio Doi and Mitsuhiro Takeuchi: "Bi Frobenius algebras"Contemporary Mathematics. 267. 67-97 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] R.Moody & Jun Morita: "Positivity for K_1 and K_2"Journal of Algebra. 229. 1-24 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kimijima and Jun Morita: "A certain algebraic construction of quasicrystals and their isomorphism classes"J.Phys.A : Math.Gen.. 33. 8483-8487 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi