• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of Numbers on Homogeneous Spaces and Generalized Hermite Constants

Research Project

Project/Area Number 12640023
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

WATANABE Takao  Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30201198)

Co-Investigator(Kenkyū-buntansha) YAMAZAKI Yohei  Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (00093477)
NAMBA Makoto  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60004462)
YAMAMOTO Yoshihiko  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90028184)
OGAWA Hiroyuki  Graduate School of Science, Associate Professor, 大学院・理学研究科, 助手 (70243160)
FUJIWARA Akio  Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30251359)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2002: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2000: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsHermite constant / Algebraic groud / Reduction theory / Flag variety / Tamagawa number / Adels geometry / 節約理論 / 旗多様体 / 代数多様体の有理点
Research Abstract

The purpose of this project is to study the distribution of rational points or integral points on an algebraic homogeneous space defined over a global field by using the method of geometry of numbers and adelic analysis. We obtained the following results. Let K be a global field, G a connected reductive K-algebraic group, Q a maximal K-parabolic subgroup of G and X = Q\G a flag variety defined over K Denote by X(K) the set of K・rational points of X. If G(A)' and Q(A)' denote the unimodular parts of the adele groups of G and Q, respectively, then the quotient space Q(A)' \G(A)' is a locally compact space and contains X(K). By nsing the sirnple root corresponding to Q, one can define a beight function H on Y. for T >o, B(T) stands for the set of elements of Y whose heights are less than or equal tu T. Then the number N(T) = IB(T) ∩X(K) I is always finite. Main results are stated as follows
1. If K is an algebraic number field, then the asymptotics N(T) 〜 ω (B(T)) τ (Q) / τ (G) (T→∞) holds. Here τ (G) and τ (Q) denotes the Tamaagwa number of G and Q, respectivaly, and ω (B(T)) stands for the volume of B(T) with respect to the Tamagawa measure ω ib Y
2. We define the function γ on G(A)' by γ (g) = min { H(xg) I ×∈X(K) } for element g of G(A)' and denote by γ (G,Q,K) the maximum of γ.γ (G,Q,K) is called the fundamental Hermite constant. Satisfies some functorial properties, e.g., the invariance of scalar restrictions of K and some central extensions of G. Furthermore we generalized Rankin's inequality and the Minkowski-Hlawka bound to the fundamental Hermite constant

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] 渡部 隆夫: "On an analog of Hermite's constant"Journal of Lie Theory. 10. 33-52 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 大野 晋, 渡部隆夫: "Estimate of Hermite constants for algebraic number fields"Commentarii Mathematics Universitatis Sancti Paul. 50. 53-63 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 森下 昌紀, 渡部隆夫: "Adele geometry of numbers"Advanced Studies in Pure Mathematics. 30. 509-536 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 渡部 隆夫: "Hermite constants of division algebras"Monatshefte for Mathematik. 135. 157-166 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 渡部 隆夫: "Fundamental Hermite constants of lancer algebraic groups"Journal of Japan Math.Soc. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 渡部 隆夫: "The Hardy-Littlewood property of flag varieties"Nagoya Math.Journal. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Takao Watanabe: "On an analog of Hermites constant"J. of Lie Theory. 10. 33-52 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shin Ohno and Takao Watanabe: "Estimate of Hermite constants for algebraic number fields"Comm. Math. Univ. Sancti Paufi. 50. 53-63 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Masanori Morishita and Takao Watanabe: "Adele geometry of numbers"Adv. Studies in Pure Math. 30. 509-536 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Takao Watanabe: "Hermite constants of division algebras"Monatshefte Math. 135. 157-166 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Takao Watanabe: "Fundamental Hermite constants of linear algebraic groups"Journal of Japan Math. Soc., to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Takao Watanabe: "The Hardy-Littlewood oroperty of flag varieties"Nagoya Math. Journal, to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Watanabe: "Hermite Constants of Division Algebras"Monatshefte fur Mathematik. 135. 157-166 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Watanabe: "Fundamental Hermite Constants of Linear Algebraic Groups"Journal of Japan Math Soc. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Watanabe: "The Handy-Littlewood Property of Flag Varieties"Nagoya Math. Journal. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] 森下昌紀, 渡部隆夫: "Adele geometry of numbers"Advanced Studies in Pure Mathematics "Class Field Theory -Its Centenary and Prospect". 30. 509-536 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 大野普, 渡部隆夫: "Estimates of Hermite constants for algebraic number fields"Comentarii Mathematici Universitatis Scienti Pauli. 50-1. 53-63 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 渡部隆夫: "Hermite Constants of division algebras"Monatshefte for Mathematik. (印刷中).

    • Related Report
      2001 Annual Research Report
  • [Publications] 藤原彰夫: "Quantum channel identification problem"Physical Review A. 63. 042304 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 藤原彰夫: "Quantum birthday problems : Geometrical aspects of quantum random coding"IEEE Transactions on Intimation Theory. 47. 2644-2649 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 藤原彰夫: "Estimates of SU(2) operation and dense coding : An intimation geometric approach"Physical Review A. 65. 012316 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 渡部隆夫: "On an analog of Hermite's constant"Journal of Lie Theory. 10. 33-52 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 渡部隆夫: "A comparison of automorphic L-tonctions in a theta series liftings for unitary groups"Israel Journal of Mathematics. 116. 93-116 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 木全正嗣: "Adelic Minkowski's second theorem over a division algebra."Proceedings of the Japan Academy. 76・10. 165-167 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 藤原彰夫: "Quantum channel identification problem"Physical Reviews. (印刷中).

    • Related Report
      2000 Annual Research Report
  • [Publications] 山本芳彦: "実験数学入門"岩波書店. 215 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi