• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arithmetic Study of Interactions of Galois groups and anabelian geometry

Research Project

Project/Area Number 12640033
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

NAKAMURA Hiroyuki  Graduate School of Science, Tokyo Metropolitan University Associate Professor, 理学(系)研究科(研究院), 助教授 (60217883)

Co-Investigator(Kenkyū-buntansha) KAWASHIMA Takeshi  Graduate School of Science, Tokyo Metropolitan University Assistant Professor, 理学(系)研究科(研究院), 助手 (40301410)
TAKEDA Yuichiro  Graduate School of Science, Tokyo Metropolitan University Assistant Professor, 理学(系)研究科(研究院), 助手 (30264584)
KURATA Toshihiko  Graduate School of Science, Tokyo Metropolitan University Assistant Professor, 理学(系)研究科(研究院), 助手 (40311899)
ITO Yukari  Graduate School of Science, Tokyo Metropolitan University Assistant Professor, 理学(系)研究科(研究院), 助手 (70285089)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2001: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2000: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsGalois representation / Galois group / Exterior Galois representation / Anabelian Geometry / Mapping Class Group / Teichmuller modular group / Arithmetic Fundamental Group / Grothendieck-Teichmuller group / 外ガロア表現 / タイヒシュラーモジュラー群 / グロタンディークタイヒシュラー群 / タイヒミュラーモジュラー群
Research Abstract

1. I wrote up results on the standard tangential base points constructed in the moduli spaces of algebraic curves. These tangential base points are constructed to give standard Galois representations in the profinite Teichmueller modular groups. This is compatible with topological description in terms of Dehn twists and the parameters of the Grothendeick Teichmueller group previously obtained in my collaboration with L.Schneps, P.Lochak. The resultant paper was submitted to Proc. Symp. Pure Math. And has been accepted in publication there.
2. I also developed studies on exterior monodromy representations of arithmetic fundamental groups arising from continuous families of elliptic curves. In particular, I proved an explicit formula describing a certain power series representation by Kummer properties of roots of special theta values which reflects the meta-abelain quotient of the above monodromy representation. This is a profinite generalization of the 1-adic formula of my previous result published in 1995 paper.In early September, I made a tplk presenting these results in the Euresco conference near Sapri, Italy. I also found a minute relation between the above power series representation and periods of Eisenstein series. I talked on this result at a workshop at RIMS, Kyoto University at the end of January, 2002.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Hiroaki Nakamura: "On a subgroup of the Grothenditck-Teichmuller group acting on the tower of profinote Teichmuller modular groups"Inventiones mathematicae. 141. 503-560 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "Harmonic and equi an harmonic equations in the Grothend et Teichmuller group"Forum Mathematicum.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "On exploit formulda for l-adic pdylogarithms"Proc.Symp.Pure Math..

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "Limits of Galois representations in foundamental groups, II"Proc.Symp.Pure Math..

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "On a subgroup of the Grothendieck-Teichmueller group acting on the tower of profinite Teichm\"uller modular groups"Inventiones math. 141. 503-560 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "Harmonic and equianharmonic equations in the Grothendieck-Teichmueller group"Forum Mathematicum. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "0n explicit formulae for 1-adic polylogarithms"Proc. Symp. Pure Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "Limits of Galois representations in fundamentalgroups along maximal degeneration of marked curves, 2"Proc. Symp. Pure Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroaki Nakamura: "On a subgrop of the Grothendieck-Teichmuller group"Invent. Math.. 141. 503-560 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] Hiroaki Nakamura: "Harmonic and equion harmonic equations in GT"Forum Math..

    • Related Report
      2001 Annual Research Report
  • [Publications] Hiroaki Nakamura: "On explint formula for l-adic polylogarithos"Proc. Symp. Pure Math..

    • Related Report
      2001 Annual Research Report
  • [Publications] Hiroaki Nakamura: "Limuts of Galo is representations in fundamutl groups II"Proc. Symp. Pure Math..

    • Related Report
      2001 Annual Research Report
  • [Publications] Hiroaki Nakamura: "On a subgroup of the Grothendieck-Teichmuller group acting on the tower of profinite Teichmuller modular groups"Inventiones Mathematicae. 141. 503-560 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Hiroaki Nakamura: "The Grothendieck Conjecture on the Fundamental Groups of Algebraic Curves"Sugaku Expositions. (to appear).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi