• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of the Kummer-Artin-Schreier-Witt theory to Number Theory and to Algebraic Geometry

Research Project

Project/Area Number 12640041
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionChuo University

Principal Investigator

SUWA Noriyuki  Professor, Chuo University,Faculty of Science and Engineering, 理工学部, 教授 (10196925)

Co-Investigator(Kenkyū-buntansha) MOMOSE Fumiyuki  Professor, Chuo University,Faculty of Science and Engineering, 理工学部, 教授 (80182187)
SEKIGUCHI Tsutomu  Professor, Chuo University,Faculty of Science and Engineering, 理工学部, 教授 (70055234)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2002: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2001: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
KeywordsKummer Theory / Witt vector / Artin-Hasse exponential series / Artin-Schreier-Witt theory / algebraic group / formal group / Cartier theory / Artin-Hasse exponential series / Artin-Hasse exponention series
Research Abstract

We have gotten some remarkable results concerning to a description of the Kummer-Artin-Schreier-Witt theory in the framework of the Cartier theory for formal groups. We intorduce an additive group W^(M) (A) for a Z[M]-algebra A, paraphrasing the classical theory of Witt vectors. W^(M)(A) has a structure of W(A)-module, and the Frobenius map F^<(M)> and the Verschiebung map are defined on W^(M)(A) as in the classical case. The map(a_0, a_1,a_2, … ) →(Ma_0,Ma_1,Ma_2, … ) is a W(A)-homomorphism of W^(M)(A) to W(A), com-patible with the Frobenius maps and the Verschiebung maps. On the other hand, the group scheme denoted by G^(M)_A plays an important role in the Kummer-Artin-Schreier-Witt thoery, and the formal completion G^(M)_A along the zero section of G^(M)_A is nothing but the formal group Spf A[[T]] with a formal group law f(X,Y) = X + Y + MXY. It is the first main result that W^(M)(A) is isomorphic to the Cartier module of p-typical curves on G^(M)_A. The second main result is a description of free resolution of W^(M)(A) as a D_A-module.
Furhtermore, if ε is an extension of G^(Λ)_A by G^(M)_A, the Cartier module C(ε) is an extension of W^(Λ)(A) by W^(M)(A). Introducing a formal power series
we give an explicit description of C(^^^__ε) = Hom_<A-gr>(^^^__W,ε). We have written up our results as the article <A note on extensions of algebraic and formal groups, V>, which will appear in a journal.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] 諏訪紀幸, 関口力: "A note on extensions of algebraic and formal groups, IV"Tohoku Mathematical Journal. 53. 203-240 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 諏訪紀幸: "Kummer-Artin-Schreier-Witt理論とCartier理論"代数幾何学シンポジューム記録,城崎. 144-167 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 諏訪紀幸: "合同zeta函数に関するArtin-Tate公式について"研究集会「代数的整数論とその周辺」報告集,数理解析研究所講究録. 1200. 13-25 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Noriyuki SUWA, Tsutomu SEKIGUCHI:: "A note on extensions of algebraic and formal groups, IV"Tohoku Mathematical Journal. 53. 203-240 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Noriyuki SUWA: "Kummer-Artin-Schreier-Witt theory and Cartier theory (in Japanese)"Proceedings of Symposium on Algebraic Geometry. Kinosaki. 144-167 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Noriyuki SUWA: "On the Artin-Tate formula for congruence zeta functions (in Japanese), Proceedings of Symposium on Number Theory, 1200"Publication of RIMS Kyoto. 13-25 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 諏訪紀幸, 関口力: "A note on extensions of algebraic and formal groups, V"Tokyo Journal of Mathematics. (掲載予定). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] T. Sekiguchi: "A note on extensions of algebraic and formal groups IV"The Tohoku Mathematical Journal. 53. 203-240 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 諏訪紀幸: "合同zeta函数に関するArtin-Tate公式について"数理解析研究所講究録. 1200. 13-25 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 諏訪紀幸: "Kummer-Artin-Schreier-Witt理論とCartier理論"2000代数幾何学シンポジューム記録. 144-167 (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi