• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mordell-Weil Lattices of Elliptic Curves and Abelian Varieties

Research Project

Project/Area Number 12640044
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionRIKKYO UNIVERSITY

Principal Investigator

SHIODA Tetsuji  Rikkyo Univ, Department of Math., Professor, 理学部, 教授 (00011627)

Co-Investigator(Kenkyū-buntansha) AOKI Noboru  Rikkyo Univ, Department of Math., Associate Professor, 理学部, 助教授 (30183130)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,800,000 (Direct Cost: ¥3,800,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2000: ¥1,900,000 (Direct Cost: ¥1,900,000)
KeywordsMordell-Weil Lattices / Elliptic Curves / Abelian Varieties / Integral Points / Codes / Elliptic Modular Surfaces / Tate-Shafarevich Group / Hodge Cycles / アーベル多様体 / ABC定理 / Davenportの限界 / コード / 球のつめこみ / 不変式論
Research Abstract

(1) Integral Points and Mordell-Weil Lattices.
As an application of Mordell-Weil Lattices, we have developed a method to study integral points in the function field case. In some favorable situation, this method gives a very efficient way for a complete determination of all the integral points of an elliptic curve. [S1]
(2) K3 Surfaces and Sphere Packings
We hare obtained lattice sphere packings in higher dimensional case (especially dimension 16, 17, 18) of fairly large packing density, by means of the Mordell-Weil Lattices of certain elliptic K3 surfaces. [S3]
(3) Invariant theory of plane quartics vs Mordell-Weil Lattices
We hare established a close relationship of the classical invariant theory of plane quartics (moduli of genus three curves) and the invariant theory of the Weyl group of type E_7 (a finite group). [S4]
(4) Some codes arising from the elliptic modular surfaces
For any N. we have constructed a linear code over the residue ring mod N which is associated with the elliptic modular surfaces of level N. If N is a prime number, this linear code over a field of N elements has a remarkable property that every nonzero code-word has a constant Bernoulli norm. The construction is based on the height formula of Mordell-Weil Lattices, [S2]
(5) Tate-Shafarevich group of elliptic curves
Aoki has proven that the 3-part of Tate-Shafarevich group can be arbitrarily large. [A2]
(6) Hodge conjecture of abelian varieties
The Hodge cycles on the Jacobian variety of a Fermat curve are studied from combinatorial viewpoint. By this, the Hodge conjecture is verified for wider class of abelian varieties of Fermat type. [A1], [A3]

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] 塩田 徹治(Tetsuji Shioda): "Integral points and Mordell-Weil lattices"A Panorama in Number Theory, Cambridge Univ. Press. 論文集. 185-193 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 塩田 徹治(Tetsuji Shioda): "Some codes arising from elliptic modular surfaces"Comment. Math. Univ. St. Pauli. 51. 67-78 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 塩田 徹治(Tetsuji Shioda): "A note on K3 surfaces and sphere packings"Proc. Japan Acad.. 76A. 68-72 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 塩田 徹治(Tetsuji Shioda): "Some new observation on invariant theory of plane quartics"Kodaira Volume, Asian J. Math.. 4. 227-234 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 青木 昇(Noboru Aoki): "Some remarks on the Hodge conjecture for abelian varieties of Fermat type"Comment. Math. Univ. Sancti Pauli. 49. 177-194 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 青木 昇(Noboru Aoki): "Hodge cycles on CM abelian varieties of Fermat type"Comment. Math. Univ. Sancti Pauli. 51. 99-129 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 青木 昇(Noboru Aoki): "On the Tate-Shafarevich groups of semistable elliptic curves"Acta Arithmetica(印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shioda, Tetsuji: "[S1] Integral points and Mordell-Weil lattices"A Panorama in Number Theory, Cambridge Univ. Press. 185-193 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shioda, Tetsuji: "[S2] Some codes arising from elliptic modular surfaces"Comment Math. Univ. St. Pauli. 51. 67-78 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shioda, Tetsuji: "[S3] A note on K3 surfaces and sphere packings"Proc Japan Acad. 76A. 68-72 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shioda, Tetsuji: "[S4] Some new observation on invariant theory of plane quartics"Kodaira volume, Asian J. Math.. 4. 227-234 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Aoki, Noboru: "[A1] Hodge cycles on CM abelian varieties of Fermat type"Comment Math. Univ. Sancti Pauli. 51. 99-129 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Aoki, Noboru: "[A2] On the Tate-Shafarevich groups of semistabte elliptic curves with a rational 3-torsion"Acta Arithmetica. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Aoki, Noboru: "[A3] Some remarks on the Hodge conjecture for abelian varieties of Fermat type"Comment Math. Univ. Sancti Pauli. 49. 177-194 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 塩田 徹治 (Tetsuji Shioda): "Some codes arising from elliptic modular surfaces, 67-78 (2002)"Comment. Math. Univ. Sancti Pauli. 51. 67-78 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 塩田 徹治 (Tetsuji Shioda): "Integral points and Mordell-Weil lattices"A Panorama in Number Theory, (Cambridge Univ. Press). 論文集. 185-193 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 青木 昇 (Noboru Aoki): "Hodge cycles on CM abelian varieties of Fermat type"Comment. Math. Univ. Sancti Pauli. 51. 99-129 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Shioda: "Integral points and Mordell-Weil Lattices"(論文集)A Panorama in Number Theory, Cambridge University Press. 185-193 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Aoki: "On the Tate-Shafarerich group of semi-stable elliptic curves with a rational point of order 3"(2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Shioda: "A note on K3 surfaces and spherepackings"Proc.Japan Academy. 76A. 68-72 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Shioda: "Some new observation on Invariant Theory of Plane Quartics"Asian J.Math. 4. 227-234 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Shioda: "Integral points and Mordell-Weil Lattices"Proc.Baker Conf.. (出版予定)(受理).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi