• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of abelian equations and study of Gaussian sums

Research Project

Project/Area Number 12640047
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionWaseda University

Principal Investigator

HASHIMOTO Kiichiro  Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (90143370)

Co-Investigator(Kenkyū-buntansha) UMEGAKI Atsuki  Sophia Univ., Department of Math., Assistant, 理工学部, 助手 (60329109)
KOMATSU Keiichi  Waseda Univ., Department of Math.Sci., Professor, 理工学部, 教授 (80092550)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsabelian equations / Inverse Galois Problem / Gaussian period / cyclic polynomial / Lehmer project / Galois group / period equation / cycle extension / 巡回方程式 / アーベル方程式 / cyclotomic numbers / ヤコビ和 / ガウス和 / Kummer拡大
Research Abstract

The main subject of our research project is the constructive sapect of the Inverse Galois theory, and our aim is to develop the systematic method to construct the family of abelian equations, which has been one of the central problems in number theory. In this research work we focused our interests to the case of cyclic equations. We proposed a new idea to make a geometric generalization of the so called Gaussian period relations in the theory of cyclotomy. Namely making use of the mechanism by which a cyclotomic polynomials give rise as irreducible polynomials of Gaussian periods, we introduced e independent variables y_0,【triple bond】y_<e-1> and constructed e^2 rational functions u_<ij> of y's, in the similar way as the cyclotomic numbers are defined. Then we proved that Q(y_0【triple bond】y_<e-1>) is a cyclic extension of Q(u'_<ij>s). By this way, we have succeeded to construct small degree e a parametric family of cyclic polynomials of degree e ; especially for e=7, we found, a simple family whose coefficients are integral polynomials in our parameter n with constant term n^7. This gives an essentially new development in the so called Lehmer project. We remark that this result gives also a partial answer to the famous 12th problem of Hilbert's, which requires to construct abelian extensions over given number field,

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] K.Hashimoto, Y.Hasegawa, F.Momose: "Modularity conjecture for Q-curves and QM-curves"International J.Math.. 10-7. 1011-1036 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Hashimoto, K.Miyake: "Inverse Galois Problem for Dihedral Groups"Number Theory and its Applications (Kluwer). 165-181 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Hashimoto: "On Brumer's family of RM-curves of genus two"Tohoku Math.J.. 52. 475-488 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Hashimoto, Y.Rikuna: "On Generic Families of Cyclic Polynomials with even Degree"Manuscripta Mathematica. 107. 283-288 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Hashimoto: "Q-curves of rational j-invaritants and Jacobian surfaces of GL2-type"Proceedings of Conferences on Galois Theory and Modular Forms (Kluver). 36-61 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Fukuda, K.Komatsu: "An Application of Siegel modular functions to Kronecker's limit formula"LNCS. 2369. 108-119 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 橋本 喜一朗, (他9名): "数学七つの未解決問題"森北出版. 201 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Hashimoto, Y.Rikuna: "On Generic Families of Cycle Polynomials with even Degree"Manuscripta Math.. 107. 283-288 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Hashimoto: "Q-curves with rational j-invariants and Jacobian surfaces of GL2-type"Proceedings of Conferences on Galois Theory and Modular Forms. (to appear). (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Fukuda, K.Komatsu: "An application of Siegel modular functions to Kronecker's limit formula"LNCS. 2369. 108-119 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Hashimoto, Y.Rikuna: "On Generic Families of Cyclic Polynomials with even Degree"Manuscripta Mathematica. 107. 283-288 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Hashimoto: "Q-curves of rational j-invaritants and Jacobian surface of GL2-type"Proceedings of Conferences on Galois Theory and Modular Forms(Kluver). 36-61 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Fukuda, K.Komatsu: "An Application of Siegel modular functions to Kronecker's limit formula"LNCS. 2369. 108-119 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 橋本 喜一朗, (他9名): "数学七つの未解決問題"森北出版. 201 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Ki-ichiro Hashimoto, Yuichi Rikuna: "On Generic Families of Cyclic Polynomials with even Degree"Manuscripta. Math.. (to appear). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 橋本喜一朗: "Langlandsの次元公式"整数論オータムワークショップ報告集「保型形式の次元公式」. 45-62 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Ki-ichiro Hashimoto, Harutaka Koseki: "Dimension of cusp forms on U(2,1) for the Picard modular groups"整数論オータムワークショップ報告集「保型形式の次元公式」. 63-65 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 橋本喜一朗: "数論と母関数"数学セミナー. 2001-10. 28-34 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Fukuda, K.Komatsu: "On Iwasawa lamda3-invariants of cyclic cubic fields of prime conductors"Mathematics of Computation. Vol.70, No.236. 1707-1712 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Ki-ichiro Hashimoto: "Generic families of quintic polynomials with Dihedral Galois Group of degree 5"第45回代数学シンポジウム報告集15-23. 45. 15-23 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Ki-ichiro Hashimoto: "二面体群に対するガロア逆問題,"数理解析研究所講究録. 1154. 125-136. (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Ki-ichiro Hashimoto: "On Brumer's family of RM-curves of genus two,"Tohoku Math.J.52. 52. 475-488. (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsuki Umegaki,Naoki Murabayashi: "Determination of all Q-rational CM-points in the moduli space of principally polarized abelian surfaces,"J.Algebra 235-1. 235-1. 267-274 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsuki Umegaki: "Determination of all Q-rational CM-points in the moduli space of polarized abelian surfaces,"Analytic Number Theory (2001), Kluwer. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] Ki-ichiro Hashimoto: "別冊「数理科学:数論の歩み」"サイエンス社(2000). 212 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi