• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic structures of non-compact hyperbolic 3-manifoIds and differential geometry

Research Project

Project/Area Number 12640063
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University (2001-2003)
The University of Tokyo (2000)

Principal Investigator

OHSHIKA Ken'ichi  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70183225)

Co-Investigator(Kenkyū-buntansha) HARA Yasuhiro  Osaka University Graduate School of Science, Instructor, 大学院・理学研究科, 助手 (10294141)
NAGASAKI Ikumitsu  Osaka University Graduate School of Science, Lecturer, 大学院・理学研究科, 講師 (50198305)
ENDO Hisaaki  Osaka University Graduate School of Science, Ass.Professor, 大学院・理学研究科, 助教授 (20323777)
Project Period (FY) 2000 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2003: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2002: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2000: ¥900,000 (Direct Cost: ¥900,000)
KeywordsHyperbolic 3-manifold / Kleinian group / Deformation space / ending lamination / tameness / Klein群 / end invariant / bounded cohomology / 双曲多様体 / 関数群 / R-樹 / Schottky群 / 凸芯 / 幾何的極限
Research Abstract

We have been studying the topological properties of the deformation spaces of hyperbolic structures on 3-manifolds making use of differential geometry and low-dimensional manifold theory. In particular, we investigated the behavior of hyperbolic structures on the boundaries of quasi-conformal deformation spaces, which is known to coincide with the boundaries of the entire deformation spaces. As a result of this line of research, Ohshika proved that Bers-Thurston conjecture, which states that every finitely generated Kleinian group would be an algebraic limit of quasi-conformal deformations of a geometrically finite group, follows once Marden's tameness conjecture is proved to be true. This should be an important progress towards the solution of the ultimate problem of classifying the hyper-bolic structures on a given 3-manifold with finitely generated fundamental group.

Report

(5 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] Fujiwara, Ohshika: "The second bounded cohomology of 3-manifolds"Publ.RIMS. 38. 347-354 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] K.Ohshika: "Density of geometrically finite groups"数理解析研究所講究録. 1270. 93-100 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 足立正, 遠藤久顕: "リーマン面の退化族の諸相"数学. 56. 49-72 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] I.Nagasaki: "The weak isovariant Borsuk-Ulam theorem for compact Lie groups"Arch.Math.. 81. 348-359 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] I.Nagasaki: "Linearity of dimension functions for semi-linear G-spheres"Proc.AMS. 130. 1843-1850 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Hara, Minami: "Borsuk-Ulam type theorems for compact Lie group actions"Proc.AMS. 132. 903-909 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Ken'ichi OHSHIKA: "Discrete Groups"American Mathematical Society. 193+x (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Fujiwara, Koji, Ohshika, Ken'ichi: "The second bounded cohomology of 3-manifolds."Publ.Res.Inst.Math.Sci.. 38 no.2. 347-354 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Ohshika, Ken'ichi: "Density of geometrically finite Kleinian groups. Hyperbolic spaces and discrete groups, II (Kyoto, 2001)"Surikaisekikenkyusho Kokyuroku. No.1270. 93-100 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Nagasaki, Ikumitsu: "The weak isovariant Borsuk-Ulam theorem for compact Lie groups."Arch.Math. (Basel). 81 no.3. 348-359 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Nagasaki, Ikumitsu: "Linearity of dimension functions for semilinear G-spheres."Proc.Amer.Math.Soc.. 130 (2002), no.6. 1843-1850 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Hara, Yasuhiro, Minami, Norihiko: "Borsul-Ulam type theorems for compact Lie group actions."Proc.Amer.Math.Soc.. 132 (2004), no.3. 903-909 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Ohshika, Ken'ichi Discrete groups.: "Translations of Mathematical Monographs (ISBN 0-8218-2080-X), RI"American Mathematical Society, Providence. x+193 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 長崎生光: "The weak isovariant Borsuk-Ulam theorem for compact Lie group"Arch Math.. 81. 348-359 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 原靖浩, 南範彦: "Borsuk-Ulam type theorems for compact Lie group actions"Proc.AMS. 132. 903-909 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Fujiwara, K.Ohshika: "The second bounded cohomology of 3-manifolds"Publ. Res. Inst. Math. Sci.. 38. 347-354 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Fujiwara, Ohshika: "The second bounded cohomdogies of 3-manifolds"Publications of RIMS. (to appear). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Ohshika: "Discrete Groups"American Mathematical Society. 193 (2002)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi