• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on Characteristic Classes of Singular Varieties, Motives ans Their Related Topics

Research Project

Project/Area Number 12640081
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKagoshima University

Principal Investigator

YOKURA Shoji  University of Kagoshima, Faculty of Science, Professor, 理学部, 教授 (60182680)

Co-Investigator(Kenkyū-buntansha) OHMOTO Toru  University of Kagoshima, Faculty of Science, Associate Professor, 理学部, 助教授 (20264400)
MIYAJIMA Kimio  University of Kagoshima, Faculty of Science, Professor, 理学部, 教授 (40107850)
TSUBOI Shoji  University of Kagoshima, Faculty of Science, Professor, 理学部, 教授 (80027375)
AOYAMA Kiwamu  University of Kagoshima, Faculty of Science, Assistant Professor, 理学部, 講師 (70202497)
KOSHIBA Yoichi  University of Kagoshima, Faculty of Science, Associate Professor, 理学部, 助教授 (00041773)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2001: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2000: ¥1,900,000 (Direct Cost: ¥1,900,000)
Keywordssingular variety / characteristic class / motief / bivariant theory / representation theory / Riemann-Roch / ミルナー類 / 同変チャーン類
Research Abstract

(1). In a joint work with Lars Emstrom we showed the unique existence of the bivariant Chern class with values in the bivariant Chow groups
(2). A blow-up map is a local complete intersection morphism. However, a Verdier-type Riemann-Roch does not hold for this blow-up map. And motivated by this result we showed several other otherresults.
(3).We obserbved that there exist various bivariant constructive functions other than those of Fulton and MacPherson. For example, any constructible function itself can be a bivariant on without imposing any geometric or topological condition on it. With this we point out that a statement made by Fulton and macPherson in their book (Categorical frameworks for the study of singular spaces) is false and furthermore we gave a modified statement of it and etc.
(4). We made several remarks on the so-called Ginzburg-Chern class introduced by Victor Ginzburg in Geometric Representation Theory.
(5). Moivated by the results in (4), we showed axiomatically that if … More there exist a bivariant chern class from the bivariant constructible function to the bivariant homology theory and if we restrict ourselves to the morphisms to nonsingular varieties the bivariant Chen class is unique and furthermore we showed that it is nothing but the Ginzburg-Chern class.
(6). Based on the results in (5), we investigated categories of morphisms in which the Ginzburg-Chern class can be captured as a bivariant Chern class, in particular we treated smooth morphisms between nonsingular varieties.
(7).Furthermore we consider morphisms with target varieties being nonsingular, and we defined another group of bivariant consructible functions which is larger than that of Fulton-MacPherson's bivariant constructible functions and we showed that the Ginzburg-Chern class can be captured as a bivariant Chern class from this bivariant constructible function to the bivariant homology theory. And in the case of arbitrary morphisms, motivated by the results obtsained in (7), we introduced formal bivariant Chern classes and we are investigating them further. Less

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (53 results)

All Other

All Publications (53 results)

  • [Publications] T.Ohmoto, S.Yokura: "Product formulas for Milnor classes"Bulletin Polish Acad. Sci,. 48. 387-401 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J.-P.Brasselet, S.Yokura: "Remarks on bivariant constructible functions"Adv. Studies in Pure Math.. 29. 53-77 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Yokura: "An application of bivariant theory to Milnor classes"Topology and Its Applications. 115. 43-61 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] L.Ernstrom, S.Yokura: "On bivariant Chern-Schwartz-MacPherson classes with values in Chow groups"Selecta Mathematica (New Series). 7(印刷中). 25 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Yokura: "Bivariant theories of constructible functions and Grothendieck transformations"Topology and Its Applications. (印刷中). 14 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Yokura: "Verdier-Riemann-Roch for Chern class and Milnor class"Asian Journal of Mathematics. (印刷中). 23 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Yokura: "Remarks on Ginzburg's bivariant Chern classes"Proceedings of the American mathematical Society. (印刷中). 8 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Yokura: "Infinitesimal parameter spaces of locally trivial deformation spaces of compact complex surfaces with ordinary singularities"Marcel Dekker,. 523-532 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S.Tsuboi, F.Guillen: "Simultaneous Cubic Hyper-resolutions of Locally Trivial Analytic Families of Complex Projective Varieties and Cohomological Descent"The Reports of the Faculty of Science, Kagoshima University. 33. 1-33 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Tsuboi: "A Certain Degenerate Ordinary Singularity of Dimension Three, Finite or infinite Dimensional Complex Analysis"Shandon Science and Technology Press. 223-228 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Tsuboi: "The Euler number of the non-singular normalization of an algebraic threefold with ordinary singulaities"Proceeings of the International Symposium on Singularity Theory and its Applications. 113-119 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kimio Miyajima: "CR geometry/analysis and deformation of isolated singularities"J. Korean Math. Soc.. 37. 193-223 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kimio Miyajima: "Strongly pseudoconvex CR manifolds and deformation of normal isolated singularities (in Japanese)"Sugaku. 53. 172-184 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kimio Miyajima: "Deformation theory of CR structures on a boundary of normal isolated singularities"Proceedings of the Japan-Korea Joint Workshop in Mathematics 2001. 115-124 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kimio Miyajima: "CR description of the formal deformations of quasi-homogeneous singularities"Selected Topics in Cauchy-Riemann Geometry,(Ed.by S.Dragomir). (印刷中). 24 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kimio Miyajima: "Strongly pseudoconvex CR manifolds and deformation of normal isolated singularities"Sugaku Expositions, Amer. Math. Soc.. (印刷中). 19 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Ohmoto,T. and Yokura,S.: "Product formulas for Milnor classes"Bulletin Polish Acad. Sci.. Vol. 48, No. 4. 387-401 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Brasselet,J.-P. and Yokura,S.: "Remarks on bivariant constructive functions"Adv. Studies in Pure Math. Vol. 29. 53-77 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yokura,S.: "An application of bivariant theory to Milnor classes"Topology and Its Applications. Vol. 115. 43-61 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Ernstrom,L. and Yokura,S.: "On bivariant Chern-Schwartz-MacPherson classes with values in Chow groups")t oapear) Selcta Mathematica )NEw Series). Vol. 7. 25 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yokura,S.: "Bivariant theories of constructible functions and Grothendieck transformations, to appear in Topology and Its Applications"14 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yokura,S.: "Verdier-Riemann-Roch tor Chern class and Milnor class")to appear) in Asian J. Mathematics. 22 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yokura,S.: "Rwnarks on Ginzburg's bivariant Chern classes")to appear) in Proc. Amer. Math. Soc.. 8 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tsuboi,S.: "Infinitesimal parameter spaces of ocally trivial deformation spaces of compact complex surfaces with ordinary singularities"Finite or Infinite Dimensional Complex Analysis )Marcel Dekker, Inc.). 523-532 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tsuboi,S. and Guillen,F.: "Simultaneous Cubic Hyper-resolutions of Locally Trivial Analytic Families of Complex Projective Varieties and Cohomological Descent, The Reports of the Faculty of Science"Kagoshima University. No. 33. 1-33 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tsuboi,S.: "A Certain Degenerate Ordinary Singularity of Dimension ThreeJgnite or mfinite Dimensional Complex Analysis"Shandon Science and Technology Press. 223-228 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tsuboi,S.: "The Euler number of the non-singular normalization of an algebraic threefold with ordinary singulaities"Proceeings of the International Symposium on Singularity Theoiy and its Applications. 113-119 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Miyajima,K.: "CR geometry/analysis and deformation of isolated singularities"J. Korean Math. Soc. 37. 193-223 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Miyajima,K.: "Strongly pseudo-convex CR manifolds and deformations of normal isolated gularities )in Japanese)"Sugaku 53. 172-184 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Miyajima,K.: "Deformation theory of CR structures on a boundary of normal isolated singularities""Complex Analysis and Related Topics", Proceedings of the Japan-Korea Joint Workshop in Mathematics 2001 , July 22-24, 2001 , Yamaguchi University. 115-124 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Miyajima,K.: "CR description of the formal deformations of quasi-homogeneous singularities, to appear in "Selected Topics in Cauchy-Riemann Geometry", )Ed.by S. Dragomir), Quademi di Matematica, Series ed. by Dipartimento di Matematica, Seconda Universita di Napoli, Caserta"24 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Miyajima,K.: "Strongly pseudoconvex CR manifolds an/deformation of normal isolated singularities, to appear in Sugaku Expositions"A. M. S.. 19

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Shoji Yokura: "An application of bivariant theory to Milnor classes"Topoloby and Its Applications. 115. 43-61 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] L.Ernstrom, S.Yokura: "On bivariant Chern-Schwartz-MacPherson classes with values in Chow groups"Selecta Mathematica (New Series). 7(印刷中). 25 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shoji Yokura: "Bivariant theories of constructible functions and Grothendieck transformations"Topology an Its Applications. (印刷中). 14 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shoji Yokura: "Verdier-Riemann-Roch for Chern class and Milnor class"Asian Journal of Mathematics. (印刷中). 23 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shoji Yokura: "Remarks on Ginzburg's bivariant Chern classes"Proceedings of the American mathematical Society. (印刷中). 8 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shoji Tsuboi: "A Certain Degenerate Ordinary Singularity of Dimension Three, Finite or infinite Dimensional Complex Analysis"Shandon Science and Technology Press. 223-228 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shoji Tsuboi: "The Euler number of the non-singular normalization of an algebraic threefold with ordinary singulaities"Proceeings of the International Symposium on Singularity Theory and its Applications. 113-119 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kimio Miyajima: "Deformation theory of CR structures on a boundary of normal isolated singularities"Proceedings of the Japan-Korea Joint Workshop in Mathematics 2001. 115-124 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kimio Miyajima: "CR description of the formal deformations of quasi-homogeneous singularities"Selected Topics in Cauchy-Reimann Geometry, (Ed. by S. Dragomir). (印刷中). 24 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kimio Miyajima: "Strongly pseudoconvex CR manifolds and deformation of normal isolated singularities"Sugaku Expositions, Amer. Math. Soc.. (印刷中). 19 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] J.-P.Brasselet and Shoji Yokura: "Remarks on bivariant constructible functions,"Advanced Studies in Pure Mathematics. 29. 53-77 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Toru Ohmoto and Shoji Yokura: "Product formulas for Milnor classes"Bulletin Polish Acad.Sci.. 48(4). 387-401 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shoji Yokura: "An application of bivariant theory to Milnor classes"Topology and Its Applications. (印刷中). 19 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Lars Ernstrom and Shoji Yokura: "On bivariant Chern-Schwartz-MacPherson classes with values in bivariant Chow groups"Erwin Schrodinger Institute Preprint Series. 891. 21 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shoji Yokura: "Bivariant theories of constructible functions and Grothendieck transformations,"Erwin Schrodinger Institute Preprint Series. 930. 21 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shoji Yokura: "Verdier-Riemann-Roch for Chern class and Milnor class"Erwin Schrodinger Institute Preprint Series. 933. 24 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shoji Tsuboi: "Infinitesimal Parameter Spaces of Locally Trivial Deformations of Compact Complex Surfaces with Ordinary Sungularities"Finite or Infinite Dimensional Complex Analysis (Marcel Dekker.Inc.).. 523-532 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shoji Tsuboi and F.Guillen: "Simultaneous Cubic Hyper-resolutins of Locally Trivial Analytic Families of Complex Projective Varieties and Cohomological Descent"The Reprots of the Faculty of Science Kagoshima University. 33. 1-33 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shoji Tsuboi: "A Certain Degenerate Ordinary Singularity of Dimension Three"Proceedings of the Eighth International Conference on Finite or Infinite Dimensional Complex Analysis, Shandon University. (印刷中).

    • Related Report
      2000 Annual Research Report
  • [Publications] Kimio Miyajima: "CR geometry/analysis and deformation of isolated singularities"J.Korean Math.Soc.. 37(2). 193-223 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Yoichi Koshiba: "On the caluculations of the coefficients of the cyclotomic polynomials II"The Reports of the Faculty of Science Kagoshima University. 33. 55-59 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi