• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the Weyl conformal invariance on manifolds with various geometric structures and its vanishing of the invariant

Research Project

Project/Area Number 12640082
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionDepartment of Mathematics, Tokyo Metropolitan University

Principal Investigator

KAMISHIMA Yoshinobu  Departement of Mathematics, Tokyo Metropolitan Universisty,Professor of Mathematics, 理学(系)研究科(研究院), 教授 (10125304)

Co-Investigator(Kenkyū-buntansha) GUEST Martin  Tokyo Metropolitan Universisty, Professor, 理学(系)研究科(研究院), 教授 (10295470)
OKA Mutsuo  Tokyo Metropolitan Universisty, Professor, 理学(系)研究科(研究院), 教授 (40011697)
OHNITA Yoshihiro  Tokyo Metropolitan Universisty, Professor, 理学(系)研究科(研究院), 教授 (90183764)
IMAI Jun  Tokyo Metropolitan Universisty, Associate Professor, 理学(系)研究科(研究院), 助教授 (70221132)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2001: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2000: ¥1,900,000 (Direct Cost: ¥1,900,000)
KeywordsQCC-structure / Uniformization / Holonomy group / Developing map / Spherical CR Geometry / C-R curvature tenso / Parabolic geometry / Quaternionic hyperbolic geometry / QCC-strutme / spherical CR 幾何 / 展開写像 / ホロノミー群 / Uniformization / C-M曲率テンサー / 4元数双曲幾何 / Parobolic幾何 / L.C.K.構造 / 共形変換 / 接触形式 / CR構造 / 四元教構造 / Weylテンサー / 平坦性
Research Abstract

1. Bochner curvature flat locally conformal Kahler manifolds: The analogue of Weyl curvature tensor on Kahler manifolds is called the Bochner curvature tensor. As it is a local invariant, the definition makes sense on locally conformal Kahler manifolds (l.c. K. manifolds). We have classified compact Bochner flat Kahler manifolds several years ago. In this continuation, we classified more generally noncompact Bochner flat l.c. K. manifolds.
2. Symmetry and Global rigidity: When there exists a closed noncompact geometric flow, called Lee-Cauchy-Riemann transformations on a compact l.c. K.manifold M, we have shown a rigidity that M will be isometric to the Hopf manifold of standard type.
3. Quaternionic Carnot-Caratheodory structure: We introduced a quaternionic C-C structure on (4n+3)-manifold M and constructed a curvature tensor T which is conformal invariant w. r. t. that geometric structure. If the curvature T vanishes, then we proved that M is locally modelled on the spherical pseudo-quaternionic geometry (Aut_<QC>(S^<4n+3>), S^<4n+3>). In particular, we have established the parabolic geometry on the boundary of the compactification of noncompact semisimple symmetric space of rank 1

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 神島芽宣: "Note on locally conformal Kahler Surfaces"Geom, Dedicata. 84. 115-124 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 神島芽宣: "Rigidify of Ohata-Ferrand's type on Compact h on Kahler l.O.K manifolds"数理研講究録. 1223. 69-79 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yoshinobu Kamishima: "Homogeneous complex affinely flat complex surfaces and its compact quotients and its applications to complex projective structures"Contemp. Math. 262. 195-223 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yoshinobu Kamishima: "The fundamental groups of compact complete affinely flat quaternionic 2-manifolds"Contemp. Math. 262. 225-232 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yoshinobu Kamishima: "Holomorphic torus actions on compact locally conformal Kahler manifolds"Compositio Math.. 124. 341-349 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yoshinobu Kamishima: "Note on locally conformal Kahler surfaces"Geom. Dedicata. 84. 115-124 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Yoshinobu Kamishima: "Rigidity of Obata-Ferrand's type on compact non-Kahler l.c.K.manifolds"Lecture notes in MSRI. 1223. 69-79 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 神島芳宣: "Note on locally conformal kahlen surfaces"Geom. Dedicata. 84. 115-124 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 神島芳宣: "Rigidity of Obata-Ferrand's type on Compact on Kahler L.C.K manifold"数理研講究録. 1223. 69-79 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Kamishima(神島芳宣): "Geomatric rigidity of Spherical hypersurfaces in quaternionic manifolds"Asian Journal of Mathematics. 3. 519-556 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Kamishima(神島芳宣): "The fundamental groups of compact affinely flat quaternionic 2-manifolds"Contemporary Mathematics. 262. 225-232 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Kamishima(神島芳宣): "Classification of homogeneous complex affinely flat surfaces with compact quotients and applications to complex projective structures"Contemporary Mathematics. 262. 195-223 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Kamishima(神島芳宣): "Holomorphic tows actions on compact locally conformal kahler manifolds"Compositio Mathematica. 124. 341-349 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Kamishima(神島芳宣): "Note on locally conformal kahler surfaces"Geometriae Dedicata. 81. 11-11 (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi