• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric and topological rigidity theorem for 3-manifolds

Research Project

Project/Area Number 12640092
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Denki University

Principal Investigator

SOMA Teruhiko  Tokyo Denki University, College of Science and Engineering, Mathematical Sciences, Professor, 理工学部, 教授 (50154688)

Co-Investigator(Kenkyū-buntansha) 桐木 紳  東京電機大学, 理工学部, 講師 (50277232)
Project Period (FY) 2000 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2003: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2002: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2000: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordshyperbolic manifolds / 3-manifolds / quasi-Fuchsian groups / geometric limits / Gromov groups / least area planes / co-compact metric / rigidity theorem / ローレンツ・アトラクタ / 双曲3次元多様体 / 代数的極限 / ザイフェルト多様体 / 擬アノソフ同相写像 / 幾何的剛性定理 / 等長写像 / 有界コホモロジー
Research Abstract

The researcher has studied thoroughly geometric and topological rigidity theorems for 3-manifolds. In particular, he found out that the existence of least area planes properly embedded in the universal coverings in the proof of topological rigidity theorems. Let M be a closed hyperbolic 3-manifold and p:H^3→M the universal covering. Here, we suppose that M has a Riemannian metric which is not necessarily hyperbolic. The metric r on H^3 induced from that on M is called a co-compact metric. D.Gabai conjectured that "any simple smooth curve in the boundary S^2_∞ of H^3 spans a properly embedded r-least area plane in H^3"(J.Amer.Math.Soc.10(1997)). Throughout this project, the researcher proved that the conjecture is true. Moreover, he proved that the result holds when π_1(M) is Gromov-hyperbolic even if M is not a hyperbolic 3-manifold. That is, it was shown that, for the universal converging M^^〜 of the manifold M, any Jordan curve in ∂M^^〜 bounds a properly embedded r-least area plane in M.
Furthermore, the researcher solved the question "What kinds of topological types do geometric limits of quasi-Fuchsian groups have ?" completely. Precisely, Σis a closed orientable surface of genus>1, and {p_n} is an algebraically convergent sequence of quasi-Fuchsian representations ρ_n:π_1(Σ)→PSL_2(C). Suppose that the sequence {Γ_n} consisting of the quasi-Fuchsian groups Γ_n=ρ_n(π_1(Σ)) converges geometrically to a Kleinian group G. Then, the researcher proved that there exists a closed set Χ in Σ×[0,1] called a crevasse so that H^3/G is homeomorphic to Σ×[0,1]-Χ. Conversely, it was also proved that, for any crevasse Χ in Σ×[0,1], there exists a geometric, limits G of quasi-Fuchsian groups such that H^3/G is homeomorphic to Σ×[0,1]-Χ.

Report

(5 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] Teruhiko Soma: "Existence of least area planes in hyperbolic 3-space with co-compact metric"Topology. 43. 705-716 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Shin Kiriki, Teruhiko Soma: "Parameter-shifted shadowing property for geometric Lorenz attractors"Tarns.Amer.Math.Soc.. 印刷中.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Koji Fujiwara, Teruhiko Soma: "Bounded classes in the cohomology of manifolds"Geom.Dedicata. 92. 73-85 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma: "Epimorphism sequences between hyperbolic 3-manifold groups"Proc.Amer.Math.Soc.. 130. 1221-1223 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma: "Volume of hyperbolic 3-manifolds with iterated pseudo-Anosov amalgamations"Geom.Dedicata. 90. 183-200 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma, Takashi Tsuno: "Curvature index for spatial theta-curves"Differential Geom.Appl.. 16. 35-47 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma: "Existence of least area planes in hyperbolic 3-spaces with co-compact metric"Topology. 43. 705-716 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Shin Kiriki, Teruhiko Soma: "Parameter-shifted shadowing property for geometric Lorenz attractors"Trans.Amer.Math.Soc.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Koji Fujiwara, Teruhiko Soma: "Bounded classes in the cohomology of manifolds"Geom.Dedicata. 92. 73-85 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma: "Epimorphism sequences between hyperbolic 3-manifold groups"Proc.Amer.Math.Soc.. 130. 1221-1223 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma: "Volume of hyperbolic 3-manifolds with iterated pseudo-Anosov amalgamations"Geom.Dedicata. 90. 183-200 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma, Takashi Tsuno: "Curvature index for spatial theta-curves"Differential Geom.Appl.. 16. 35-47 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Teruhiko Soma: "Existence of least area planes in hyperbolic 3-space with co-compact metric"Topology. 43. 705-716 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Shin Kiriki, Teruhiko Soma: "Parameter-shifted shadowing property for geometric Lorenz attractors"Trans.Amer.Math.Soc.. (掲載決定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Teruhiko Soma: "Volume of hyperbolic 3-manifolds with iterated pseudo-Anosov amalgamations"Geom. Dedicata. 90. 183-200 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Koji Fujiwara, Teruhiko Soma: "Bounded classes in the cohomology of manifolds"Geom. Dedicata. 92. 73-85 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Teruhiko Soma: "Degree-one maps between hyperbolic 3-manifolds with the same volume limit"Trans. Amer. Math. Soc.. 355・7. 2753-2772 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Teruhiko Soma: "Epimorphism sequences between hyperbolic 3-manifold groups"Proc. Amer. Math. Soc.. 130・4. 1221-1223 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Teruhiko Soma: "Volume of hyperbolic 3-manifolds with iterated pseudo-Anosov Amalgamations"Geom. Dedicata. (印刷中).

    • Related Report
      2001 Annual Research Report
  • [Publications] Teruhiko Soma: "Sequences of degree-one maps between geometric 3-manifolds "Math.Annalen. 316. 733-742 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Teruhiko Soma: "Degree-one maps between hyperbolic 3-manfolds with the same volume limit"Trans.Amer.Math.Soc.. (印刷中).

    • Related Report
      2000 Annual Research Report
  • [Publications] Teruhiko Soma: "Epimorphism sequences between hyperbolic 3-manifold groups"Proc.Amer.Math.Soc.. (印刷中).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi