• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Limit theorems for U-statistics with degenerate kernels and applications

Research Project

Project/Area Number 12640112
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionMusashi Institute of Technology (2002-2003)
Kanazawa University (2000-2001)

Principal Investigator

KANAGAWA Shuya  Musashi Institute of Technology, Faculty of Engineering, Professor, 工学部, 教授 (50185899)

Co-Investigator(Kenkyū-buntansha) 前園 宣彦  九州大学, 経済学部, 助教授 (30173701)
土谷 正明  金沢大学, 工学部, 教授 (50016101)
小川 重義  金沢大学, 自然科学研究科, 教授 (80101137)
Project Period (FY) 2000 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2002: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2001: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordsasymptotic expansion / large deviation / U-statistics / V-statistics / stochastic differential equation / Euler-Maruyama scheme / reflecting Brownina motion / モンテカルロ法 / エッジワース展開 / 漸近展開 / ノンパラメトリック統計量 / ノンパラメトリック推定
Research Abstract

The author investigated limit theorems for symmetric statistics using new technique by applying limit theorems for Banach space valued i.i.d. random variables. Usually well known Hoeffding's decomposition for symmetric scholastics cannot be used for' symmetric statistics with non-degenerate kernels. Since we consider some applications of large deviation principles for U-statistics we need to find the concrete value of the rate function. However in general it is difficult to obtain it because the rate function contains the Radon-Nikodym derivative of probability measures. Therefore we investigate another representation of the rate function defined on Eudidean space for not only mathematical but also numerical analysis of symmetric statistics.
On the other hand there are some relations between symmetric statistics and approximate solutions of Ito's stochastic differential equation (SDE). The author focused on the distribution of pseudo-random numbers which are used for numerical applicati … More on of such approximate solutions and consider the error estimation of the Euler-Maruyama approximation when the distribution of underlying random variables is different from the normal distribution. Furthermore some results for stochastic differential equations with boundary conditions on mulii-dimensional domains (so-called Skorohod SDE) are obtained. We define an approximate solution of stochastic differential equation (SDE) with a reflecting barrier using the penalty method and estimate error of the approximate solution. In this note we have two aims. One is to define the approximate solution using not only a sequence of increments of Brownian motion which is independent and has normal distribution but also dependent sequence that does not obey normal distribution. Another one is, to show the advantage of the penalty method, we observe sample paths of Brownian motion with a soft boundary, i.e. any path of the Brownian motion does not reflect at the boundary immediately but is absorbed for a short period according to the strength of the path getting out of the boundary. Less

Report

(5 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] S.Kanagawa, Y.Saisho: "Strong Approximation of Reflecting Brownian Motion Using Penalty Method and its Application to Computer Simulation"Monte Carlo Methods Appl.. 6. 105-114 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 金川秀也, 小川重義: "確率微分方程式の数値解法(応用編)"日本数学会、「数学」、論説. 53巻・2号. 125-138 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] S.Kanagawa: "Some Remarks on Strong Approximation of Reflecting Brownian Motion Using Penalty Method"Proceedings of Neural, Parallel & Scientific Computations. Vol.2. 63-70 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 金川秀也: "核関数のフーリエ級数展開によるU, V統計量の解析について"数理解析研究所講究録. 1308巻. 185-198 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] K.Inoue, S.Kanagawa, Y.Saisho, H.Uesu: "Error Estimation for the Euler-Maruyama Approximate Solution of Reflecting Brownian Motion Using Penalty Method and Numerical Applications"Journal of Dynamic Systems and Applications. (印刷中). (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] S.Kanagawa, S.Ogawa: "Numerical solution of the stochastic differential equation"Sugaku Expositions, American Mathematical Society. (印刷中). (2005)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 金川秀也, 黒田耕嗣: "確率 そのまま使える答えの書き方"講談社サイエンテフィック. 176 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] S.Kanagawa, Y.Saisho: "Strong Approximation of Reflecting Brownian Motion Using Penalty Method and its Application to Computer Simulation"Monte Carlo Methods Appl.. 6. 105-114 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] S.Kanagawa: "Some Remarks on Strong Approximation of Reflecting Brownian Motion Using Penalty Method"Proceedings of Neural, Parallel & Scientific Computations (Atlanta, U.S.A.). Vol.2. 63-70 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] K.Inoue, S.Kanagawa, Y.Saisho, H.Uesu: "Error Estimation for the Euler-Maruyama Approximate Solution of Reflecting Brownian Motion Using Penalty Method and Numerical Applications"Journal of Dynamic Systems and Applications. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] S.Kanagawa, S.Ogawa: "Numerical solution of the stochastic differential equation, 2-applications"Sugaku Expositions, American Mathematical Society. (to appear). (2005)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 山田実, 金川秀也, 北川章夫: "卒業研究達成度評価の実施"工学教育(Journal of JSEE). 51,2. 52-54 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 山下元, 稲井田二郎, 金川秀也: "近似推論を応用した競技者評定法"第16回バイオメディカルファジィシステム学会年次大会講演論文集. 561-562 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] J.Inaida, H.Yamashita, S.Kanagawa: "Power Series on the Fuzzy Number Space"第14回ソフトサイエンスワークショップ講演論文集、日本知能情報ファジィ学会論文集. 1245-1256 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Inoue, S.Kanagawa, Y.Saisho, H.Uesu: "Error Estimation for the Euler-Maruyama Approximate Solution of Reflecting Brownian Motion Using Penalty Method and Numerical Applications"Journal of Dynamic Systems and Applications. (to appear). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Kanagawa, S.Ogawa: "Numerical solution of the stochastic differential equation, applications2"Sugaku Expositions. (to appear). (2005)

    • Related Report
      2003 Annual Research Report
  • [Publications] 金川秀也: "核関数のフーリエ級数展開によるU, V-統計量の解析について"数理解析研究所講究録. 1308巻. 185-198 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Kanagawa: "Some Remarks on Strong Approximation of Reflecting Brownian Motion Using Penalty Method"Parallel and Scientific Computations. 2巻. 63-70 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 金川秀也, 小川重義: "確率微分方程式の数値解法(応用編)"日本数学会、「数学」、論説. 53巻、2号. 25-138 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Kanagawa, Y.Saisho: "Strong Approximation of Reflecting Brownian Motion Using Penalty Method and its Application to Computer Simulation"Monte Carlo Methods Application. 6巻. 105-114 (2000)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Kanagawa: "A Representation of the Rate Functions in Large Deviation Principles for U-statistics with Degenerate Kernels"Trends in Probability and Related Analysis. 254-264 (1999)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Kanagawa, Y.Saisho: "Strong approximation of reflecting Brownian Motion using 1peralty method and its approkivration ts computer simulation"Monte Carlo Methods Appl.. 6. 105-114 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] 金川秀也, 小川重義: "確率微分方程式の数値解法"日本数学会「数学」論説. 53・2. 125-138 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Kanugawa,Y.Saisho: "Strong Approximation of Reflecting Brownian motion Using Penalty Method and its Application to Computer Simulation"Monte Carlo Methods Appl.. 6. 105-114 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 金川秀也,小川重義: "確率微分方程式の数値解法2,応用編"「数学」日本数学会刊,論説. (発表予定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 金川秀也,黒田耕嗣,葭田岳彦,森真: "確率 そのまま使える答えの書き方"講談社. 168 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi