• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Real analitic probabilistic approach to theory of random numbers

Research Project

Project/Area Number 12640123
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKOBE UNIVERSITY

Principal Investigator

FUKUYAMA Katusi  Kobe University, Faculty of Science, Associate Professor, 理学部, 助教授 (60218956)

Co-Investigator(Kenkyū-buntansha) TAKAYAMA Nobuki  Kobe University, Faculty of Science, Professor, 理学部, 教授 (30188099)
YAMAZAKI Tadashi  Kobe University, Faculty of Science, Professor, 理学部, 教授 (30011696)
HIGUCHI Yasunari  Kobe University, Faculty of Science, Professor, 理学部, 教授 (60112075)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2001: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2000: ¥2,100,000 (Direct Cost: ¥2,100,000)
KeywordsCentral limit theorem / Monte Carlo method / quasi Monte Carlo method / uniformly distributed sequence / random numbers / M sequence / Hausdorff dimension / numerical integration / Riesz-Rakov和
Research Abstract

1. We proved almost sure invariance principles for lacunary trigonometric series with gap n_<k+1>/n_k【greater than or equal】1+c/k^α(α<1) assuming some condition relating to the convergence of fourth moment. As the collorary of this result, we can derive almost sure invariance principles and hence the classical law of the iterated logarithm for sum Σcos2πn_kt where n_k=[exp(k^β)] (β>4/9), for which P. Erdos made a conjecture.
2. We proved the polynomial central limit theorem for non-conventional aveage of Riesz-Raikov sums. The typical examples is Σf(θ^nx)g(θ^n^2x). Sum of this type had been ergodic point of view, but our result gives the probabilistic limit theorems.
3. We proved the central limit theorem for Σf(n_kt) where n_k is the Baker's sequence. The Baker's sequence is the increasing arrangement of the set consisting of arbitrary product of some integers belonging the finite set of coprime integers.
4. We proved the a.e. version of the law of the large numbers for sum Σf(n_kt) where n_k satisfies the condition of Koksma type.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] K.Fukuyama: "On the asymptotic distribution of pseudorandom functions"Monte Carlo Methods and Applications. 6. 167-174 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Fukuyama: "The central limit theorem for Σf(θ^nx)g(θ^<n^2>x)"Ergodic Theory and Dynamical Systems. 20. 1335-1353 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Fukuyama: "Le theoreme limite central pour les suites de R.C.Baker"Ergodic Theory and Dynamical Systems. 21. 479-492 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Fukuyama: "Almost sure invariance principles for lacunary trigonometric series"Comptes Rendus de l'Academie des Sciences, Serie I, Mathematique. 332. 685-690 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Fukuyama: "A version of the law of the large numbers"Colloquim Mathematicum. 90. 295-298 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Fukuyama: "The central limit theorem for non-conventional averages"Bolyai Society Mathematical Studies. 10(印刷中). (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Katusi Fukuyama: "The central limit theorem for Σf(θ^nx)g(θ^n^2x)"Ergodic Theory and Dynamical Systems. 20. 1335-1353 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Katusi Fukuyama & Tetsuo Tomokuni: "On the asymptotic distribution of pseudorandom functiions"Monte Carlo Methods and Applications. 6. 167-174 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Katusi Fukuyama & Bernard Petit: "Le theoreme limite central pour les suites de R.C. Baker"ErgodicTheory and Dynamical Systems. 21. 479-492 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Katusi Fukuyama: "Almost sure invariance principles for lacunary trigonometric series"Comptes Rendus de l'Academie des Sciences, Paris, Serie I. 332. 685-690 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Katusi Fukuyama: "A version of the law of the large numbers"Colloquium Mathematicum. 90. 295-298 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Katusi Fukuyama: "The central limit theorem for non-conventional average"Bolyai Society Mathematical Studies. 10(in press). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.O. Georgii, Y. Higuchi: "Percolation and number of Phases in the 2D Ising model"Journal of Mathematical Physics. 41. 1153-1169 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y. Higuchi, Yu. Zhang: "On the speed of convergence for two-dimensional first passage Ising percolation"The Annals of Probabailty, 2000. 28. 353-378 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Oaku, N. Takayama and Uli Walther: "A localization algorithm for D-modules"Journal of Symbolic Computation. 29. 721-728 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Oaku and N. Takayama: "Algorithms for D-modules-restriction, tensor product, localization, and algebraic local cohomology groups"Journal of Pur and Applied Algebra. 156. 267-308 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Fukuyama: "On the asymptotic distribution of pseudorandom functions"Monte Carlo Methods and Applications. 6. 167-174 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Fukuyama: "The central limit theorem for Σf(θ^nx)g(θ^<n2>x)"Ergodic Theory and Dynamical Systems. 20. 1335-1353 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Fukuyama: "Le theoreme limite central pour les suites de R.C.Baker"Ergodic Theory and Dynamical Systems. 21. 479-492 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Fukuyama: "Almost sure invariance principles for lacunary trigonometric series"Comptes Rendus de l'Academie des Sciences, Serie I, Mathematique. 332. 685-690 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Fukuyama: "A version of the law of the large numbers"Colloquim Mathematicum. 90. 295-298 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Fukuyama: "The central limit theorem for non-conventional averages"Bolyai Society Mathematical Studies. 10(印刷中). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Fukuyama: "The central limit theorem for Σf(θ^nx)g(θ^nx)"Ergodic Theory and Dynamical Systems. 20. 1335-1353 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Fukuyama: "Le theoreme limite central pour les suites de R.C.Baker"Ergodic Theory and Dynamical Systems. 21(印刷中). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Fukuyama: "Almost sure invariance principles for lacunary trigonometric series"Comptes Rendus de l'Academie des Sciences, Serie I, Mathematique. 332(印刷中). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Fukuyama: "The central limit theorem for non-conventional average"Bolyai Society Mathematical Studies. (印刷中). (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi