• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of Quasilinear Elliptic and Parabolic Differential Equations

Research Project

Project/Area Number 12640163
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionFukui University of Technology (2001)
Kanazawa University (2000)

Principal Investigator

HAYASIDA Kazuya  Fukui Univ. Tech., Prof., 工学部, 教授 (70023588)

Co-Investigator(Kenkyū-buntansha) ICHINOSE Takashi  Kanazawa Univ., Math., Prof., 理学部, 教授 (20024044)
GOTO Shun-ichi  Kanazawa Univ., Compt., Assoc. Prof., 理学部, 助教授 (30225651)
OMATA Seiro  Kanazawa Univ., Compt., Assoc. Prof., 理学部, 助教授 (20214223)
ISHII Nobuhiko  Fukui Univ. Tech., Prof., 工学部, 教授 (20202939)
OGURISU Osamu  Kanazawa Univ., Compt., Assoc. Prof., 理学部, 助教授 (80301191)
小林 治  金沢大学, 理学部, 教授 (10153595)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2000: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsCauchy problem / parabolic equation / Dirichlet problem / mean curvature / fast diffusion / H-convexity / 超伝導現象 / 変分問題 / 混合境界値問題 / ill-posed problem / Dirichlet問題
Research Abstract

In this research project we have set up two subjects. The first subject is to research the non-characteristic Cauchy problem for quasilinear parabolic equations. And the second subject is to research the Dirichlet problem of prescribed mean curvature equation.
About the first subject the problem is not well-posed even for the case of linear parabolic equations. So it is important to show that the uniqueness. For the linear case the main method is to use the pseudo differential operators. But for the non-linear case we can not use such a method. In this research project we have devised another method and we have applied it to prove the uniquness for solutions of the quasilinear degenerat parabolic equation, whose typical model is the fast diffusion.
About the second subject there are many papers treating the existence of solutions upto now. In these the essential condition is imposed on the boundary, that is, H-convexity condition. In this research project we have tried to remove such a condition and we have proved that a portion of the boundary is not necessary to satisfy H-convexity condition under some assumptions on the exterior force. And we have applied this result to the case of annular domains.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report

Research Products

(19 results)

All Other

All Publications

  • [Publications] 林田和也, 中谷政夫: "On the Dirichlet problem of prescribed mean curvature equation without H-convexity condition"Nagoya Math. J.. 157. 177-209 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 林田和也: "D-N型混合境界条件をもつ弾性体方程式の解の正則性について"数理解析研究所講究録. 1181. 12-23 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 林田和也: "On some improperly posed problem for a degenerate nonlinear parabolic equation"Zeit. Analysis Anwerdung.. 19. 395-413 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 林田和也: "A sight modification to : On some improperly posed problem for a degenerate nonlinear parabolic equation"Zeit. Analysis Anwerdung.. 19. 889-890 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 林田和也, 小林正朋: "On L^P regularity for weak derivatives of spherically symmtric solutions of the porous media equation"Fun kcialaj Ekvacioj. 45. 23-51 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Hayasida and M. Nakatani: "On the Dirichlet problem of prescribed mean curvature equation without H-convexity condition"Nagoya Math. J.. Vol. 157. 177-209 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Hayasida: "On some improperly posed problem for a degenerate nonlinear parabolic equation"Zeit. Analysis Anwendung. Vol. 19. 395-413 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Hayasida: "A slight modification to : On some improperly posed problem for a degenerate nonlinear parabolic equation"Zeit Analysis Anwendung. Vol. 19. 889-890 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Hayasida and M. Kobayashi: "On L regularity for weak derivatives of spherically symmetric solutions of the porous media equation"Funkcialaj Ekvacioj. Vol. 45. 23-51 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 林田和也: "An improperly posed problem for a degenerate nonlinear diffusion equation"Nonlinear Analysis. 47巻. 1637-1648 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 林田和也, 小林正明: "On Lp regularity for weak derivatives of spherically symmetric solutions of the porous media equation"Funkcialaj Ekvacioj. 45巻(発表予定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 小俣正朗, 長沢壯之: "Numerical computations for motion of vortices governed by a hyperbolic Ginzburg-Landau system"Nonlinear Analysis. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 小俣正朗, 木南伸一: "Anumerical approach to the eikonal equation"Nonlinear Analysis. 47巻. 3795-3802 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 一瀬孝, P.Exner: "Geometrically induced spectrum in curved leaky wires"Commun. Math. Phys.. 221巻. 499-510 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 林田和也,中谷政夫: "On the Dirichlet problem of prescribed mean curvature equations without H-convexity condition"Nagoya Mathematical Journal. Vol.157. 177-209 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 林田和也: "On some improperly posed problem for a degenerate nonlinear parabolic equation"Zeitschrift fur Analysis and ihre Anwendungen. vol.19. 395-413 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小俣正朗,今井仁司 他: "A numerical approach to the asymptotic behavior of solutions of a one-dimensional free boundary problem"Japan Journal of Industrial and Applied Mathematics. vol.18. 41-56 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 一瀬孝,田村英男: "The norm convergence of the Trotter-Kato product formula with error bound"Communications in Mathematical Physics. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 小林治: "Schiwarzian and Mobius transformations in higher dimensions"Clifford Algebras and their Applications in Mathematical Physics. vol.2. 239-246 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi