• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Stochastic analysis on loop space

Research Project

Project/Area Number 12640173
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

AIDA Shigeki  Osaka University, Graduate school of Engineering Science, Professor, 大学院・基礎工学研究科, 教授 (90222455)

Co-Investigator(Kenkyū-buntansha) SEKINE Jun  Osaka University, Graduate school of Engineering Science, Associate Professor, 大学院・基礎工学研究科, 助教授 (50314399)
NAGAI Hideo  Osaka University, Graduate school of Engineering Science, Professor, 大学院・基礎工学研究科, 教授 (70110848)
亀山 敦  大阪大学, 大学院・基礎工学研究科, 助手 (00243189)
桑江 一洋  横浜市立大学, 理学部, 助教授 (80243814)
尾角 正人  大阪大学, 大学院・基礎工学研究科, 助教授 (70221843)
日野 正訓  京都大学, 大学院・情報科学研究科, 講師 (40303888)
吉田 伸生  京都大学, 大学院・理学研究科, 講師 (40240303)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,700,000 (Direct Cost: ¥3,700,000)
Fiscal Year 2002: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2000: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsLogarithmic Sobolev inequality / Schrodinger operator / Semiclassical limit / heat kernel / rough path / シュレーディンガー作用書 / 準古典的近似 / ラプラスの方法 / スペクトルギャップ / 超縮小性
Research Abstract

(1) We gave an estimate on the gap of spectrum of Schrodinger operators by using weak Poincare inequality. Also we gave an estimate on the distribution function of the ground state by the inequality.
(2) Let H be the space of H^1-paths on a Euclidean space. Consider a Morse function on H which is a sum of the energy of the path and a smooth function on H which can be estended to a smooth function on the space of continuous paths. We defined a Witten Laplacian twisted by the Morse function on a Wiener space and proved that the first order behavior of the lowest eigenvalue under semiclassical limit is determined by the hessian of the Morse function.
(3) Consider a continuous function F on the Cameron-Martin subspace of a classical Wiener space. Assume F can be extended to a continuous function F on the Wiener space. Then if the domain {F > 0} is a connected set, then weak Poincare inequalities hold on {F > 0}. We extend this result to the case where F is a continuous function of Brownian rough paths.
(4) We proved very precise Gaussian estimates on heat kernels on Riemannian manifolds which possess poles under the assumptions that the curvature and the derivatives go to 0 sufficiently fast at infinity.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] S.Aida: "An estimate of the gag of spectrium of Sehrochinger operators which generate hyperbounded semigranps"Journal of Functional Analysis. 185. 474-526 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Primer Gaussian lower bounds on heat kernels"Stochastics in Finite and Infinite Dimeneion. 1-28 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "On a certain semiclassical problem on Wiener spaces"Public atrenr of RIMS. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Witten Laplacian on pinned push group and its expected semi classical behavior"Infinite dimensional analysis, Quantum probability and related topics. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Semiclassical limit of the honest eigenvalue of a Schidinger operator on a Wiener space"Journal of Functional Analysis. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Precise Gaussian estimater of heat kernols on asymptotically plat Riemannism menifolds with poles"Proceedings of the 1st Sino-German Conference on stochastic analysis. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "An estimate of the gap of spectrum of Schrodinger operators which generate hyperbounded semigroups"Journal of Functional Analysis. 185. 474-526 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Precise Gaussian lower bounds on heat kernels"Stochastic in Finite and Infinite dimensions. 1-28 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "On a certain semiclassical problem on Wiener spaces"Publication of RIMS. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Witten Laplacian on pinned path group and its expected semiclassical behavior"IDAQP. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Semiclassical limit of the lowest eigenvalue of a Schrodinger operator on a wiener space"Journal of Functional Analysis.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida: "Precise Gaussian estimate of heat kernels on asymptotically flat Riemannian manifolds with poles"Proceedings of the first Sino-German conference on stochastic analysis. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Aida, T-S, Zhang: "On the small time aeymptotion of diffusion processor on path groups"Potential Analysis. 16・2. 67-78 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S, Aida: "On a certain semiclassical problem on Wiener spaces"Publications RIMS.. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] S, Aida: "Witten complex in pinned path group and its expected semiclassical behaviour"Infinite dimensional analysis, Quantum Probability and related topics. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Aida, H.Kawahi: "Short time asymptotics of a certain infinite dimensional difference process"Stochastic analysis and related topics VII. 48. 77-124 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Aida: "An estimate of the gap of spectrum of Schrodinger operators which generate hyperhounded semi groups"Journal of Functional Analysis. 185. 474-526 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Aida, T-S.Zhorg: "On the small time asymptotics of diffusion processes on path groups"Potential Analysis. 16. 67-78 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shigehi Aida: "Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces"Journal of Fuictional Analysis. 174・2. 430-477 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shigehi Aida Broue,Qiinler: "Equivalence of heat kernel measure and pinned Wiener measure on loop groups"Comptes Rendus de l'Academie des Sciences. 331・9. 709-712 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shigehi Aida: "Stochastic analysis on loop spaces"Sugahu expresstions. 13・2. 197-214 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shigehi Aida: "On the irreducibility of Dirichlet forms on domains in infinite dimensional spaces"Osaka Journal of Mathematics. 37・4. 953-966 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] S.Aida,T-S.Zhang: "On the short time asymptotics of transition probability of diffusion on path groups"Potential Analysic. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] Shigeki Aida: "An estimate of the gap of spectrum of Schroedinger operators which generate hyperbounded semigroups"Journal of Functional Analysis. (to appear).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi