• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

THE STUDY OF HYPERFUNCTION QUANTUM FIELD THEORY

Research Project

Project/Area Number 12640181
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of Tokushima

Principal Investigator

NAGAMACHI Shigeaki  The University of Tokushima, Faculty of Engineering, Professor, 工学部, 教授 (00030784)

Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsAxiomatic Quantum Field Theory / Fourier hyperfunction / 場の量子論 / 超関数 / 作用素環 / 超関数論
Research Abstract

In the paper "Hyperfunction quantum field theory : Analytic structure, modular aspects, and local observable algebras" by S. Nagamachi and E. Bruning, the net of local observable algebras is constructed in the theory of hyperfunction quantum field, which plays an important role in the theory of Haag-Araki. Special technique is required in the hyperfunction quantum field theory because test-functions with compact supports which are used in standard tempered quantum field theory are not available in the hyperfunction quantum field theory.
In the paper "SUPPORT AND KERNEL THEOREM FOR FOURIER HYPERFUNCTIONS" by T. Nishimura and S. Nagamachi the kernel theorem with support conditions is proved for Fourier hyperfunctions, using the method of complexanasysis in several variables. In the paper "Kernel Theorem for Fourier Hyperfunctions" by E. Bruning and S. Nagamachi the same result is proved in another method, the method of functional analysis.
In the paper "Hyperfunction quantum field ; theory : Localized fields without localized test functions" by S. Nagamachi and E. Bruning a model which satisfies all the axioms of hyperfunction quantum field theory, and has no test-functions of compact supports.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] S.Nagamachi, E.Bruning: "Hyperfunction quantum field theory : Analytic structure, modular aspects, and local observable algebras"J.Math.Phys.. 42-1. 99-129 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Nishimura, S.Nagamachi: "SUPPORT AND KERNEL THEOREM FOR FOURIER HYPERFUNCTIONS"Osaka J.Math.. 38-3. 667-680 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] E.Bruning, S.Nagamachi: "Kernel Theorem for Fourier Hyperfunctions"J.Math. The University of Tokushima. 35. 57-64 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Nagamachi, E.Bruning: "Hyperfunction quantum field ; theory : Localized fields without localized test functions"Lett.Math.Phys.. (印刷中). (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S. Nagamachi and E. Bruning: "Hyperfunction quantum field theory : Analytic structure, modular aspects, and local observable algebras"J. Math. Phys.. 42. 99-129 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Nishimura and S. Nagamachi: "SUPPORT AND KERNEL THEOREM FOR FOURIER HYPERFUNCTIONS"Osaka J. Math.. 38. 667-680 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] E. Bruning and S. Nagamachi: "Kernel Theorem for Fourier Hyperfunotions"J. Math. The University of Tokushima. 35. 57-64 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S. Nagamachi and E. Bruning: "Hyperfunction quantum field : theory : Localized fields without localized test functions"Lett. Math. Phys.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Nagamachi, E.Bruning: "Hyperfunction quantum field theory : Analytic structure, modular aspects, and local observable algebras"J. Math. Phys.. 42-1. 99-129 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Nishimura, S.Nagamachi: "SUPPORT AND KERNEL THEOREM FOR FOURIER HYPERFUNCTIONS"Osaka J. Math.. 38-3. 667-680 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] E.Bruning, S.Nagamachi: "Kernel Theorem for Fourier Hyperfunctions"J. Math. The University of Tokushima. 35. 57-64 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Nagamachi, E.Bruning: "Hyperfunction quantum field ; theory : Localized fields without localized test functions"Lett. Math. Phys.. (印刷中). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Nagamachi, E.Bruening: "Hyperfunction quantum field theory : Analytic structure, modular aspects, and local observable algebras"Journal of Mathematical Physics. Vol.42 No.1. 99-129 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Nishimura, S.Nagamachi: "Support and Kernel theorem for Fourier hyperfunctions"Osaka Journal of Mathematics. Vol.38 No.3. 667-680 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] E.Bruening, S.Nagamachi: "Kernel Theorem for Fourier Hyperfunctions"Journal of Mathematics, The University of Tokushima. Vol.35. 57-64 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Nagamachi: "Hyperfunction quantum field theory : Analytic structure modular aspects, and local obsevable algebras"Journal of Mathematical Physics. Vol.42 No.1. 99-129 (2001)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi