• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the research of some applications in real analysis for the Lorentz and Orlicz spaces

Research Project

Project/Area Number 12640185
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKagoshima University

Principal Investigator

KITA Hiro-o  Kagoshima University, Faculty of Education, Professor, 教育学部, 教授 (20224941)

Co-Investigator(Kenkyū-buntansha) MORI Naganori  Oita University, Faculty of Education and Welfare Science, Professor, 教育福祉科学部, 教授 (40040737)
KEMOTO Nobuyuki  Oita University, Faculty of Education and Welfare Science, Professor, 教育福祉科学部, 教授 (70161825)
YASUI Tsutomu  Kagoshima University, Faculty of Education, Professor, 教育学部, 教授 (60033891)
Project Period (FY) 2000 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2003: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2002: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2001: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsOelicz space / weight / Hardy / transfer map / embedding / product space / control function / normality / 概収束 / 転移写像 / modular / 位相空間 / コンパクト / maximal function / 可微分多様体 / メタコンパクト / パラコンパクト
Research Abstract

The first research product of our study is as follows. We obtained some weighted norm inequalities for the Hardy-Littlewood maximal function M(f) and the iterated maximal function M^k(f) = M(M^<k-1>(f)) in Orlicz spaces. Let L^Φ_ω(R^n) be a weighted Orlicz space with weight ω, where Φ is a Young function. We could a necessarily and sufficient condition for the weighted inequality for the maximal function in weighted Orlicz spaces.
Our second research product is a study of the control function of almost everywhere convergence of functions. We introduced a new concept of modular function space which is a generalization of Banach function space. We could decide this control function for almost everywhere convergence of the functions in modular function spaces.
Yasui studied relations between Haefliger's obstructions to topological embeddings and transfer maps. He proved that vanishing Haefliger's obstructions of a map means that the map is cobordant to a differentiable embedding in the sense of Stong.
On the computation of high accuracy of the expected values of products of the normal order statistics. Mori showed by the numerical method that Gaussian method is highly accurate and very efficient on reducing the number of iterative calculations as possible as we can.
Kemoto investigated the preservation of mild normality and strong zero-dimensionality of products of ordinals. He showed that the product of two subspaces of an ordinal is mildly normal and that the product of finitely many subspaces of an ordinal is strongly zero-dimensional.

Report

(5 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (29 results)

All Other

All Publications (29 results)

  • [Publications] H.kita: "A reverse weighted inequality for the Hardy-Littlewood maximal function in Orlicz spaces"Acta Math.Hungar.. 98. 83-101 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kita, T.Miyamoto, K.Yoneda: "On X-a.e. convergence and absolutely continuous norm"Functions, Series, Operators (Budapest). 277-286 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kita, T.Miyamoto, K.Yoneda: "Modular function spaces and control functions of almost everywhere convergence"Commentationes Mathematicae (Poznan). 41. 99-133 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Yasui, Y.Kuramoto: "On Haefliger's obstructions to embeddings and transfer maps"Osaka J.Math.. 40. 69-79 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] N.Kemoto, H.Hirata: "Separating by G_δ-sets in finite powers of ω_1"Fund.Math.. 177. 83-94 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kita: "A reverse weighted inequality for the Hardy-Littlewood maximal function in Orlicz spaces"Acta Math.Hungar.. 98. 83-101 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kita, T.Miyamoto, K.Yoneda: "On X-a.e. convergence and absolutely continuous norm"Functions, Series, Operators (Budapest). 277-286 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kita, T.Miyamoto, K.Yoneda: "Modular function spaces arid control functions of almost everywhere convergence"Commentationes Mathematicae (Poznan).. 41. 99-133 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Yasui, Y.Kuramoto: "On Haefliger's obstructions to embeddings and transfer maps"Osaka J.Math.. 40. 69-79 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] N.Kemoto, H.Hirata: "Separating by G_δ-sets in finite powers of ω_1"Fund.Math.. 177. 83-94 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kita: "Weighted inequalities for iterated maximal functions in Orlicz spaces"Math.Nachr.. 未定. (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Kita: "A reverse weighted inequality for the Hardy-Littlewood maximal function in Orlicz spaces"Acta Math.Hungar.. 98(1-2). 83-101 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] N.Kemoto, Hirata: "Separating by G_{\delta}-sets in finite powers of \omega_1"Fund.Math.. 177. 83-94 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] N.Kemoto, W.G.Fleissner, J.Terasawa: "Zero-dimensionality of Products of Ordinals"Top.Appl.. 132. 109-127 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] N.Mori: "On the Computation of High Accuracy of Numerical Integral concerning with Order Statistics"Res.Bull.Fac.Edu. & Weif.Sci.Oita Univ.. 25(1). 169-174 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Kita: "On X-a.e. Convergence and Absolutely Continuous Norm"Functions, Series, Operators Alexits Memorial Conference. 1. 277-286 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Yasui: "On Haefliger's obstructions to embeddings and transfer maps"Osaka J. Math.. 40, No.1. 1-11 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Kemoto: "Subnormality in \omega_1^2"Top. Appl.. 122. 287-296 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Kemoto: "Normality and paranormality in product spaces"Top. Appl.. 121. 319-331 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] N.Mori: "On the Expected Values of Products of the Normal Order Statistics for Sample Sizes 51 to 55"Res. Bull. Fac. Edu. & Weif. Sci. Oita Univ.. 25(未定). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Kita, T.Miyamoto, K.Yoneda: "Modular function space and function of almost everywhere convergence"Commentationes Mathematicae(Poznan Poland). 41. 99-133 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Kemoto, K.Kuwaoka: "ParaLindelof Subspaces in Products of two Ordinals"Sci. Math. Japonicae. 54. 369-381 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Yasui: "Embedding simply connected 2n-manifolds into complex projective"Proc. of Romania Academy. (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Mori: "On the Computation of High Accuracy of Numerical Integral Concerning with Order Statistics"Res. Bell. Fac. Educ., Oita Univ. (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Tsutomu Yasui and Yoshiyuki Kuramoto: "On conditions that a map is cobordant to an embedding"Far East J.Math.Sci.Special. なし special vol.. 189-206 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Tsutomu Yasui: "On the embedding problem from the viewpoint of differential topology"Proc.Fourth International Workshop on Differential Geometry, Brasov-Romania,. 4. 314-320 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Tsutomu Yasui,Takashi Murata,Yoshiyuki Kuramoto: "Non-embeddability of manifolds into projective spaces"Math.J.Toyama Univ.. 23(未定). (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] N.Kemoto,K.Tamano and Y.Yajima: "Generalized paracompactness of subspaces in products of two ordinals"Top.Appl.. 104. 155-168 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] N.Kemoto,K.D.Smith and P.J.Szeptycki: "Countable paracompactness versus normality in w^2_1"Top.Appl. 104. 141-154 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi