• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on ideal boundaries of open Riemann surfaces

Research Project

Project/Area Number 12640192
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionDaido Institute of Technology

Principal Investigator

TADA Toshimasa  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (90105635)

Co-Investigator(Kenkyū-buntansha) UEDA Hideharu  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (20139968)
SEGAWA Shigeo  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (80105634)
IMAI Hideo  Daido Institute of Technology, Engineering, Professor, 工学部, 教授 (00075855)
NAKAI Mitsuru  Daido Institute of Technology, Engineering, Professor emeritus, 名誉教授 (10022550)
NARITA Junichirou  Daido Institute of Technology, Engineering, Assistant Professor, 工学部, 助教授 (30189211)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥900,000 (Direct Cost: ¥900,000)
KeywordsPicard principle / essential set / Royden compactification / Schrodinger operator / Martin boundary / meromorphic function / interpolating sequence / harmonic dimension / 除外摂動 / 被覆面上の調和関数 / ピカール次元 / 擬カトー測度 / マルチン理想境界 / 主関数問題
Research Abstract

Martin ideal boundaries. Tada and Nakai showed that the magnitude of an essential set of a density can be prescribed in advance to a certain extent if the Picard principle is valid for the density. Imai proved that the Picard dimension of a signed measure of quasi Kato class is positive if and only if a quadratic form induced by a Schrodinger operator with the measure of its potential is positive definite. Royden ideal boundaries. Nakai and Tada proved the existence of two Riemannian manifolds or even two Euclidean domains such that these two domains are homeomorphic, their two Royden algebras are ring isomorphic, their two Royden compactifications are homeomorphic, and yet they are not almost quasiconformally equivalent. Boundary behabior of harmonic functions. Segawa constructed a covering surface D and a projection (ψ of the unit disk D satisfying HB(D)oψ= HB(D) and HP(D)oψ≠HP(D). Segawa completely determined the topological structure of the Martin boundaries of 3-sheeted covering surfaces of Heins type including minimal boundaries. Nakai constructed an infinitely sheeted covering surface of the complex plane which is a Heins surface such that the harmonic dimension of it is the cardinal number of the continuum. Value distribution theory of meromorphic functions. Ueda solved the Problem 2.27 in Hayman's book in a special case. Ueda proved an improvement of Gundersen's 2-2 theorem by Muess. Point separation by bounded analytic functions and theory of function algebra. Narita gave a sufficient condition for existence of harmonic interpolating but not interpolating sequence in a plane region. Narita considered a sequence in a plane region such that the infimum of the diameter of the complement of the region is positive and divided the sequence into two sequences. He showed that the sequence is an interpolating sequence if the closure of two divided sequences are disjoint in the maximal ideal space.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (42 results)

All Other

All Publications (42 results)

  • [Publications] H.Ueda: "On entire functions of the form e^H+ e^L + 1 all of whose zeros are of even order with two polynomials H and L"Bull.Daido Inst.Tech.. 36. 5-10 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Ueda: "Meromorphic functions f and g that share five values {a_j} in the sense of E_1 (a_j, f) = E_1(a_j, g) and a sixth value CM"Bull.Daido Inst.Tech.. 37(発表予定). (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S.Segawa: "Bounded harmonic functions on unlimited covering surfaces"数理解析研究所講究録. 1137. 86-91 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] N.Jin: "Kuramochi boundary of unlimited covering surfaces"Analysis. 20. 163-190 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S.Segawa: "Martin boundary of unlimited covering surfaces"Jour.d'Analyse Math.. 82. 55-72 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Nakai: "A form of classical Liouville theorem for polyharmonic functions"Hiroshima Math.J.. 30. 205-213 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 中井三留: "ピカール原理に於ける本態集合と除外摂動"大同工業大学紀要. 36. 11-20 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Nakai: "Harmonic Liouville theorem for exterior domains"J.Math.Analy.Appli.. 253. 269-273 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 中井三留: "超等角的ロイデン完閉化の一性質"大同工業大学紀要. 37(発表予定). (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J.Narita: "Interpolating sequences on plane domains with hyperbolically rare boundary"数理解析研究所講究録. 1137. 71-78 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 成田淳一郎: "補間点列と調和補間点列が一致しない平面領域"大同工業大学紀要. 37(発表予定). (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Nakai: "Existence of quasi-isometric mappings and Royden compactifications"Ann.Acad.Sci.Fenn., Ser.A.I.Math.. 25. 239-260 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Nakai: "Dirichlet finite harmonic measures on topological balls"J.Math.Soc.Japan. 52. 501-513 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Hayashi: "A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain"J.d'Analyse Math.. 82. 267-283 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Ueda: "On entire functions of the form e^H + e^L + 1 all of whose zeros are of even order with two polynomials H and L"Bull. Daido Inst. Tech.. Vol. 36. 5-10 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Ueda: "Meromorphic functions f and g that share five values {a_j} in the sense of E_1(a_j,f) = E_1(a_j,g) and a sixth value CM"Bull. Daido Inst. Tech.. Vol. 37 (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S. Segawa: "Bounded harmonic functions on unlimited covering surfaces"RIMS Koukyuuroku. Vol. 1137. 86-98 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] N. Jin: "Kuramochi boundary of unlimited covering surfaces"Analysis. Vol. 20. 163-190 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S. Segawa: "Martin boundary of unlimited covering surfaces"Jour. d'Analyse Math.. Vol. 82. 55-72 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nakai: "A form of classical Liouville theorem for polyharmonic functions"Hiroshima Math. J.. Vol. 30. 205-213 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nakai: "Essential Sets and Negligible Perturbations in the Picard Principle"Bull. Daido Inst. Tech.. Vol. 36. 11-20 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nakai: "Harmonic Liouville theorem for exterior domains"J. Math. Analy. Appli.. Vol. 253. 269-273 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nakai: "A Property of Superconformal Royden Compactificartions"Bull. Daido Inst. Tech.. Vol. 37 (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J. Narita: "Interpolating sequences on plane domains with hyperbolically rare boundary"RIMS Kokyuroku. Vol. 1137. 71-78 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J. Narita: "Plane domains for which interpolating sequences and harmonic interpolating sequences do not coincide"Bull. Daido Inst. Tech.. Vol. 37 (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nakai: "Existence of quasi-isometric mappings and Royden compactifications"Ann. Acad. Sci. Fenn.. Ser. A.I. Math.. Vol. 25. 239-260 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Nakai: "Dirichlet finite harmonic measures on topological balls"J. Math. Soc. Japan. Vol. 52. 501-513 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Hayashi: "A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain"J. d'Analyse Math.. Vol. 82. 267-283 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Nakai: "Harmonic Liouville theorem for exterior domains"J. Math. Analy. Appli. 253. 269-273 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 中井三留: "超等角的ロイデン完閉化の一性質"大同工業大学紀要. 37(発表予定). (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Ueda: "Meromorphic functions f and g that share five values {aj} in the sense of E1(aj, f)=E1(aj, g) and a sixth value CM"Bull. Daido Inst. Tech.. 37(発表予定). (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 成田淳一郎: "補間点列と調和補間点列が一致しない平面領域"大同工業大学紀要. 37(発表予定). (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Nakai: "A form of classical Liouville theorem for polyharmonic functions"Hiroshima Math.J.. 30. 205-213 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Nakai: "Harmonic Liouville theorem for exterior domains"J.Math.Analy.Appli.. 253. 269-273 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 中井三留: "ピカール原理に於ける本態集合と除外摂動"大同工業大学紀要. 36(掲載予定). (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Masaoka: "Martin boundary of unlimited covering surfaces"J.d'Analyse Math.. 82. 55-72 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] N.Jin: "Kuramochi boundary of unlimited covering surfaces"Analysis . 20. 163-190 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Ueda: "On entire functions of the form e^H+e^L+1 all of whose zeros are of even order with two polynomials H and L "大同工業大学紀要. 36(掲載予定). (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Narita: "Interpolating sequences on plane domains with hyperbolically rare boundary"京都大学数理解析研究所講究録. 1137. 71-78 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Nakai: "Existence of quasi-isometric mappings and Royden compactifications"Ann.Acad.Sci.Fenn.,Ser.AI.Math.. 25. 239-260 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Nakai: "Dirichlet finite harmonic measures on topological balls"J.Math.Soc.Japan. 52. 501-513 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Hayashi: "A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain"J,d'Analyse Math.. 82. 267-283 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi