• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Structure of the Solutions to Partial Differential Equations Degenerating on the Initial Surface, and its Applications

Research Project

Project/Area Number 12640194
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka Electro-Communication University

Principal Investigator

MANDAI Takeshi  Faculty of Engineering, Professor, 工学部, 教授 (10181843)

Co-Investigator(Kenkyū-buntansha) ASAKURA Fumioki  Faculty of Engineering, Professor, 工学部, 教授 (20140238)
TAHARA Hidetoshi  Sophia University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (60101028)
IGARI Katsuju  Ehime University, Faculty of Engineering, Professor, 工学部, 教授 (90025487)
YAMAHARA Hideo  Faculty of Engineering, Associate Professor, 工学部, 助教授 (30103344)
SAKATA Sadahisa  Faculty of Engineering, Associate Professor, 工学部, 助教授 (60175362)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2002: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 2001: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsFuchsian partial differential equations / regular singularity / method of Frobenius / characteristic exponent / characteristic Cauchy problem / フックス型偏微分作用素 / フックス型変数 / Volevicタイプシステム
Research Abstract

The indicial polynomial and its zeros called characteristic exponents play an important role in the study of Fuchsian partial differential equations in the sense of Baouendi-Goulaouic, that is, linear partial differential equations with regular singularity along the initial surface. We had succeeded to construct a solution map which gives the local structure of the solutions to homogeneous single Fuchsian partial differential equations and first order Fuchsian systems in a complex domain, without any assumption on the indicial polynomial.
In this research, we constructed a solution map for Fuchsian systems of Volevic type (not necessarily first order). We need to consider the systems without reducing them to first order systems, since such a reduction involves singular transformations.
We also considered partial differential equations with several Fuchsian variables. We constructed distribution null-solutions for such equations in the real domain. The situation is far more complicated than that for equations with a single Fuchsian variable, for which we had already constructed distribution null-solutions.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] T.Mandai, H.Tahara: "Structure of Solutions to Fuchsian Systems of Partial Differential Equations"Nagoya Math.J.. 169. 1-17 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Igari: "Removable singularities of holomorphic solutions of linear partial differential equations"J.Math.Soc.Japan. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H.Tahara: "On the singular solutions of nonlinear singular partial differential equations, I"J.Math.Soc.Japan. 53. 711-729 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H.Chen, Z.Luo, H.Tahara: "Formal solutions of nonlinear first order totally characteristic type PDE with irregular singularity"Ann.Inst.Fourier, Grenoble. 51. 1599-1620 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] J.E.C.Lope, H.Tahara: "On the analytic continuation of solutions to nonlinear partial differential equations"J.Math.Pures Appl.. 81. 811-826 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.Hara, S.Sakata: "Star-shaped periodic solutions for x'(t)=-α{1-|x(t)|^2}R(θ)x(|t|)"Nonlinear Analysis. 49. 455-470 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Mandai and H. Tahara: "Structure of Solutions to Fuchsian Systems of Partial Differential Equations"Nagoya Math. J.. 169. 1-17 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Igari: "Removable singularities of holomorphic solutions of linear partial differential equations"J. Math. Soc. Japan. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H. Tahara: "On the singular solutions of nonlinear singular partial differential equations I"J. Math. Soc. Japan. 53. 711-729 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H. Chen, Z. Luo and H. Tahara: "Formal solutions of nonlinear first order totally characteristic type PDE with irregular singularity"Ann. Inst. Fourier, Grenoble. 51. 1599-1620 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] J.E.C. Lope and H. Tahara: "On the analytic continuation of solutions to nonlinear partial differential equations"J. Math. Pures Appl.. 81. 811-826 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] F. Asakura: "Kinetic condition and the Gibbs function"Taiwanese J. Math.. 4. 105-118 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S. Sakata: "Stability sets for linear differential-difference equations with two delays"Dynamic Systems and Applications. 9. 569-594 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Hara and S. Sakata: "Dynamics of a delay differential system with periodically oscillatory coefficients"Nonlinear Analysis. 47. 4399-4408 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T. Hara and S. Sakata: "Star-shaped periodic solutions for x'(T) = -α{1 - |x(t)|^2}R(θ)x([t])"Nonlinear Analysis. 49. 455-470 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Mandai, T., Tahara, H.: "Structure of Solutions to Fuchsian Systems of Partial Differential Equations"To Appear in Nagoya Math. J.. 169. (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Lope, J.E.C., Tahara, H.: "On the analytic continuation of solutions to nonlinear partial differential equations"J. Math. Pures Appl.. 81. 811-826 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Hara, T., Sakata, S.: "Star-shaped periodic solution for x'(t)=-α{1-|x(T)|^2}R(θ)x([t])"Nonlinear Analysis. 49. 455-470 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Mandai, T., Tahara, H.: "Structure of Solutions to Fuchsian Systems of Partial Differential Equations"Nagoya Math. J.. (To appear). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mandai,T.: "The Method of Frobenius to Fuchsian Partial Differential Equations "J.Math.Soc.Japan. 52:3. 645-672 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi