• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quantum symmetry in tensor categories

Research Project

Project/Area Number 12640201
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionIBARAKI UNIVERSITY

Principal Investigator

YAMAGAMI Shigeru  Ibaraki Univ., college of Science, Professor, 理学部, 教授 (90175654)

Co-Investigator(Kenkyū-buntansha) OHTSUKA Fumiko  Ibaraki Univ., college of Science, Associate Prof., 理学部, 助教授 (90194208)
FUJIWARA Takanori  Ibaraki Univ., college of Science, Professor, 理学部, 教授 (50183596)
HIAI Fumio  Tohoku Univ., Information Science, Professor, 情報科学研究科, 教授 (30092571)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥900,000 (Direct Cost: ¥900,000)
Keywordstensor categories / orbifold / Hopf algebras / Frobenius algebra / bimodule / duality / 五角形方程式 / 自由積 / スペクトル流 / 平面代数 / 分岐則代数
Research Abstract

1. A polygonal presentation is formulated for semisimple tensor categories. The result is then used to describe duality structures on semisimple tensor categories.
2. Symmetries of tensor categories are formulated for finite groups, which is applied to perform orbifold constructions in tensor categories. For the case of abelian groups, we further formulate the second orbifolds and have established the duality for orbifolds, which contains the famous AD-duality as a special case.
3. As a variation of rigidity in tensor categories, we have formulated the notion of Frobenius reciprocity and derived various formulas on cyclic tensor products. As an application, the combinatorial structure in subfactor theory is proved to be equivalent to the reciprocity.
4. The orbifold construction for tensor categories is extended to the symmetry governed by the representation of finite-dimensional Hopf algebras so that the duality remains valid.
5. The duality principle for orbifolds is further extended in terms of the notion of splitting Frobenius algebras in tensor categories. The orbifold construction is here interpreted as taking bimodule extensions with actions of relevant categorical Frobenius algebras.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] Fumio Hiai: "Free relative entropy for measures and a corresponding perturbation"J. Math. Soc. Japan. 54. 679-718 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Fumio Hiai: "Inequalities involving unitarily invariant norms"Linear Algebra Appl.. 341. 151-169 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Fumio Hiai: "Concavity of certain matrix trace functions"Taiwanese J. Math.. 5. 535-554 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Fumiko Ohtsuka (Matsuhisa): "Total excess on length surfaces"Math. Ann.. 319. 675-706 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shigeru Yamagami: "C^*-tensor categories and free product bimodules"J. Funct. Anal.. 197. 323-346 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shigeru Yamagami: "Tannaka duals in semisimple tensor categories"J. Algebra. 253. 350-391 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Fumio Hiai: "Free relative entropy for measures and a corresponding perturbation"J. Math. Soc. Japan. 54. 679-718 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Fumio Hiai: "Inequalities involving unitarily invariant norns"Linear Algebra Appl.. 341. 151-169 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Fumio Hiai: "Concavity of certain matrix trace functions"Taiwanese J. Math.. 5. 535-554 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Fumiko Ohtsuka: "Total excess on length sarfaces"Math. Ann.. 319(2001). 675-706 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shigeru Yamagami: "C^*- tensor categories and free product bimodules"J. Funct. Anal.. 197(2003). 323-346

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shigeru Yamagami: "Tannaka duals in semisimple tensor categories"J. Algebra. 253. 350-391 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shigeru Yamagami: "Frobenius reciprocity in tensor categories"Math. Scand.. 90. 35-56 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Shigeru Yamagami: "Group symmetry in tensor categories and duality for orbifolds"J. Pure and Applied Algebra. 167. 83-128 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Shigeru Yamagami: "Tannaka duals in semisimple temsor categories"J. Algebra. 253. 350-391 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S. Yamagami: "Polygomal presentations of semisimple tenser categories"J. Math. Soc. Japan. 54. 61-88 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] F. Hiai, Y. Ueda: "Automorphisms of free product-type and their crossed-products"J. Operator Theory. (in press).

    • Related Report
      2001 Annual Research Report
  • [Publications] T. Fujiwara: "Anumerical study of spectrol flous of the hermitian wilson-Dirac operator"Pnog. Theor. Phys.. 107. 163-175 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y. Machigashima, F. Ohtsuka (Matsuhisa): "Total excess on length surfaces"Math. Ann.. 319. 675-706 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi